Analisis Jumlah Pengguna pada Traffic IP-based dengan Multi Criteria Decision Making

MARISA PREMITASARI

Sari


Abstrak

Trafik telekomunikasi sudah bermigrasi ke IP-based Traffic. Salah satunya adalah Laboratorium TIK (Teknologi Informasi dan Komunikasi) ITENAS yang meng-generate invarian trafik. Pada penelitian ini, penulis melakukan monitoring pasif dan aktif untuk mendapatkan berbagai invarian trafik. Monitoring pasif didapatkan dari software ISP Moratel dan SOPHOS Firewall. Monitoring aktif dilakukan dengan capture data secara live pada waktu jam sibuk. Invarian trafik yang berhasil di-captured adalah incoming traffic, outgoing traffic, speed, volume, date dan downtime. Jam sibuk diambil berdasarkan dugaan sementara  mulai pukul  10.00-16.00.  Invarian ini menjadi input dari sistem untuk dijadikan kriteria dan jam sibuk  dijadikan atribut. Kriteria dan atribut  diolah dengan metoda Multi Criteria Decision Making yaitu SAW (Simple Additive Weighting) dan AHP(Analytical Hierarchy Process). Output dari sistem adalah prediksi jumlah pengguna di jam sibuk dengan skala fuzzy rules. Hasil penelitian menyimpulkan pukul 11.00 AM-12.00 PM adalah jam tersibuk dengan jumlah user terbanyak.

Kata kunci: monitoring aktif, monitoring pasif, kriteria, atribut,bobot

Abstract

Telecommunication traffic has migrated to IP-based traffic .One of the industry is Laboratorium TIK ITENAS  (Teknologi Informasi dan Komunikasi)  which generates traffic  invariant. In this study, the authors conducted passive and active monitoring to obtain various traffic invariance. Passive monitoring were obtained from ISP Moratel software and SOPHOS Firewall. Active monitoring were done by capturing live data during peak hours. Traffic invariance that have been captured consist  incoming traffic, outgoing traffic, speed, volume, date and downtime. Busy hours were taken based on personal estimation start from 10.00-16.00. This invariance became the system’s input  which has been used as criteria and peak hours are used as attributes. Criteria and attributes were processed using the Multi Criteria Decision Making method, namely SAW (Simple Additive Weighting and AHP (Analytical Hierarchy Process). The output of the system is user’s number prediction  with fuzzy scale. The result  concluded that 11.00 AM-12.00 PM is the  busiest hours with the most number of users

Keywords: active monitoring, passive monitoring, criterion, attributes, weight

 


Teks Lengkap:

PDF

Referensi


Afshari, A., Mohajed, M., & Yusuff, R. M. (2010). Simple Additive Weighting Approach to Personal Selection Problem. International Journal of Innovation, Management and Technology, 1(5), 511-515. doi:10.7763/IJIMT.2010.V1.89

Dede, G., Kamalakis, T., & Varoutas, D. (2011). Evaluation of Optical Wireless Technologies in Home Networking : An Analytical Hierarchy Approach. Journal of Optical Communication and Networking, 3(11), 850-859. doi:https://doi.org/10.1364/JOCN.3.000850

E, N., Chu, X., Guo, W., & Zhang, J. (2013). User Data Traffic Analysis For 3G Celullar Networks. Paper presented at the 2013 8th International Conference on Communications and Networking in China (CHINACOM), Guilin,China.

Harli, E. (2016). Pemilihan Network Monitoring System Berdasarkan Kajian Efektifitas Sistem Informasi dengan Pendekatan AHP : Studi Kasus pada “PT.TUV”. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 2(1), 64-70. doi:10.26418/jp.v2i1.15555

Haryadi, S., & Premitasari, M. (2014). Traffic analysis of number of request per user and Volume per Request Hits on IP networks. Paper presented at the 2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA), Kuta,Indonesia.

Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155-161. doi:10.1016/j.eswa.2016.01.042

Khan, R., Kumar, P., Jayakody, D. N. K., & Liyanage, M. (2019). A Survey on Security and Privacy of 5G Technologies: Potential Solutions,Recent Advancements and Future Directions. IEEE Communications Surveys and Tutorials, 22(1), 196-248. doi: 10.1109/COMST.2019.2933899

Mohan, V., Reddy, Y. R. J., & Kalpana, K. (2011). Active and Passive Network Measurements : A Survey. International Journal of Computer Science and Information Technologies (IJCSIT), 2(4), 1372-1385.

Nofriansyah, D. (2015). Konsep Data Mining Vs Sistem Pendukung Keputusan (1 ed.). Sleman: Deepublish.

Pawestri, D., & Sihwi, S. W. (2012). Perbandingan Penggunaan Metode AHP dan SAW untuk Sistem Pendukung Keputusan Pemilihan Paket Layanan Internet. ITSMART:Jurnal Teknologi dan Informasi, 1(2), 74-81. doi: https://doi.org/10.20961/itsmart.v1i2.596

Premitasari, M. (2018). Volume Traffic IP-Based dengan Pemodelan Jam Sibuk. MIND, 3(1), 1-14.

Rohandi, M., Tuloli, M. Y., & Jassin, R. T. (2018). Priority Determination of Underwater Tourism Site Development in Gorontalo Province using Analytical Hierarchy Process (AHP). Paper presented at the ICIEVE 2017, Manado Indonesia.

Sahir, S. H., Rosmawati, R., & Minan, K. (2017). Simple Additive Weighting Method to Determining EmployeeSalary Increase Rate. International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), 3(8), 42-48.

Yigit,T., Isik, A. H., & Ince,M. (2013). Web-based Learning Object Selection Software Using Analytical Hierarchy Process. IET Software, 174-183.

Ungkawa, U., Faruqi, R., & Fachrudin, N. F. (2019). Perbandingan Metode Multifactor Evaluation Process dan Analytical Hierarchy Process. Studi kasus :Promosi Jabatan di Biro Kepegawaian Institut Teknologi Nasional Bandung. MIND Journal, 4(2), 111-121.




DOI: https://doi.org/10.26760/mindjournal.v5i2.92-107

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (cetak) : 2338-8323   |  ISSN (elektronik) :   2528-0902 

diterbitkan oleh :

Informatika Institut Teknologi Nasional Bandung

Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 181)  Fax. 7202892

Email : mind.journal@itenas.ac.id

____________________________________________________________

Statistik Pengunjung :

  Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License