Implementasi Metode Principal Component Analysis dan Hidden Markov Model pada Pengenalan Suara

Youllia Indrawaty N, Andriana Z, Fadhlin Prasetia

Sari


Informasi sinyal suara yang dikenali memiliki karakteristik yang unik. Dengan adanya keunikan pada sinyal suara dapat diimplementasikan untuk melakukan identifikasi suara pada bidang kesehatan yang difungsikan sebagai pengenalan suara pada tunawicara. Dimana pada pengembangannya aplikasi mampu untuk membantu pembelajaran pada tunawicara. Metode yang dapat melakukan ekstraksi ciri suara salah satunya adalah metode Principal Component Analsis. Metode Principal Component Analysis bekerja dengan melakukan ekstraksi ciri suara dan pengelompokan pada pola suara. Suara yang direkam melalui proses pre-processing audio sebelum dikelompokan menggunakan Principal Component Analysis untuk mendapatkan nilai koefisien suara. Hasil dari nilai koefisien disimpan sebagai sinyal referensi dan digunakan pada proses pencocokan sinyal suara menggunakan algoritma Hidden Markov Model. Sistem diuji sebanyak 3 sesi pengujian oleh 14 orang penguji. Berdasarkan hasil pengujian diketahui bahwa sistem yang dibangun mencapai tingkat akurasi 85% dari 3 sesi pengujian oleh 14 orang penguji.

Teks Lengkap:

PDF


DOI: https://doi.org/10.26760/mindjournal.v2i2.51-60

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (cetak) : 2338-8323  |  ISSN (elektronik) :  2528-0902

diterbitkan oleh:

Informatika Institut Teknologi Nasional Bandung

Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 181)  Fax. 7202892

Email : mind.journal@itenas.ac.id

____________________________________________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License