Implementasi Metode Principal Component Analysis dan Hidden Markov Model pada Pengenalan Suara
Sari
Informasi sinyal suara yang dikenali memiliki karakteristik yang unik. Dengan adanya keunikan pada sinyal suara dapat diimplementasikan untuk melakukan identifikasi suara pada bidang kesehatan yang difungsikan sebagai pengenalan suara pada tunawicara. Dimana pada pengembangannya aplikasi mampu untuk membantu pembelajaran pada tunawicara. Metode yang dapat melakukan ekstraksi ciri suara salah satunya adalah metode Principal Component Analsis. Metode Principal Component Analysis bekerja dengan melakukan ekstraksi ciri suara dan pengelompokan pada pola suara. Suara yang direkam melalui proses pre-processing audio sebelum dikelompokan menggunakan Principal Component Analysis untuk mendapatkan nilai koefisien suara. Hasil dari nilai koefisien disimpan sebagai sinyal referensi dan digunakan pada proses pencocokan sinyal suara menggunakan algoritma Hidden Markov Model. Sistem diuji sebanyak 3 sesi pengujian oleh 14 orang penguji. Berdasarkan hasil pengujian diketahui bahwa sistem yang dibangun mencapai tingkat akurasi 85% dari 3 sesi pengujian oleh 14 orang penguji.
Teks Lengkap:
PDFDOI: https://doi.org/10.26760/mindjournal.v2i2.51-60
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.