Prediksi Ekspor Jasa Transportasi Indonesia Menggunakan LSTM Berbasis Data Perdagangan Global Terbuka

ARIYONO SETIAWAN, WISNU HANDOKO, ABDUL RAZAK BIN ABDUL HADI, CHOO WOU ONN

Sari


ABSTRAK

Penelitian ini memprediksi nilai ekspor jasa transportasi Indonesia menggunakan model Long Short-Term Memory (LSTM) berbasis data terbuka perdagangan global dalam mengatasi pola nonlinier dan ketergantungan temporal. Peneliti melatih model LSTM tiga lapis dengan aktivasi ReLU dan optimasi Adam menggunakan data ekspor tahunan (2005–2023) dari World Bank dan UNCTAD, dengan pembagian data latih-uji 80:20. Model mencapai MAPE 0,89% dan koefisien korelasi r = 0,999 (p < 0,0001), menunjukkan presisi tinggi. Model secara akurat menangkap gangguan akibat pandemi dan tren pemulihan, menawarkan alat prediksi berbasis AI untuk perencanaan ekspor dan kebijakan perdagangan. Ini merupakan studi pertama yang menerapkan LSTM pada ekspor jasa transportasi Indonesia dengan data terbuka, memberikan kontribusi metodologis dan praktis untuk negara berkembang.

Kata kunci: kecerdasan buatan, peramalan ekspor, Indonesia, LSTM, layanan transportasi

ABSTRACT

This study forecasts Indonesia’s transport service export values using a Long Short-Term Memory (LSTM) model based on open global trade data in capturing nonlinear patterns and temporal dependencies. A three-layer LSTM model is trained using ReLU activation and Adam optimization on annual export data from 2005 to 2023 sourced from the World Bank and UNCTAD. The dataset is split into 80% training and 20% testing portions. The model achieves a MAPE of 0.89% and a correlation coefficient of r = 0.999 (p < 0.0001), indicating high precision.The model accurately reflects pandemic-induced shocks and subsequent recovery trends, provides an AI-driven forecasting tool for export planning and trade policy. This is the first study to apply LSTM to Indonesia’s transport service exports using open data, contributing methodological advancement and practical value for developing economies.

Keywords: artificial intelligence, export forecasting, Indonesia, LSTM, transport services


Teks Lengkap:

PDF

Referensi


Chen, Y., Wang, L., & Deng, Y. (2023). Artificial Intelligence Review, 56(2), 1119–1145. https://doi.org/10.1007/s10462-022-10122-7

Dong, Y., Wang, X., Zhang, Y., & Liu, L. (2023). Deep learning-based trade volume prediction with cross-border economic indicators. Expert Systems with Applications, 215, 119279. https://doi.org/10.1016/j.eswa.2022.119279

Guo, Z., Jiang, Y., Liu, Q., & Liang, L. (2023). Long Short-Term Memory networks for time-series forecasting in trade logistics: A hybrid framework. Journal of Intelligent & Fuzzy Systems, 44(1), 177–188. https://doi.org/10.3233/JIFS-223183

Huang, L., & Lin, M. (2020). Journal of Cleaner Production, 258, 120680. https://doi.org/10.1016/j.jclepro.2020.120680

Khan, I., Javaid, M., & Ahmed, A. (2022). Forecasting South Asian export trends using ARIMA and ARDL models: A comparative study. Asia-Pacific Journal of Regional Science, 6(2), 123–139. https://doi.org/10.1007/s41685-022-00217-z

Kou, G., Xu, Y., Peng, Y., & Shen, F. (2021). Artificial intelligence in forecasting trade flows: A review and case analysis. Technological Forecasting and Social Change, 173, 121039. https://doi.org/10.1016/j.techfore.2021.121039

Lee, D., & Kim, J. (2022). Expert Systems with Applications, 203, 117477. https://doi.org/10.1016/j.eswa.2022.117477

Li, H., & Zhao, Y. (2022). Neurocomputing, 489, 200–212. https://doi.org/10.1016/j.neucom.2021.09.078

Li, X., & Zhu, Y. (2020). Computers & Industrial Engineering, 147, 106664. https://doi.org/10.1016/j.cie.2020.106664

Luo, X., Liu, C., & Wang, Q. (2021). Knowledge-Based Systems, 233, 107550. https://doi.org/10.1016/j.knosys.2021.107550

Mehta, A., Nair, M., & Saha, A. (2022). Predicting trade dynamics using LSTM and machine learning: A data-driven approach. International Journal of Forecasting, 38(3), 912–926. https://doi.org/10.1016/j.ijforecast.2021.05.002

Naqvi, S. M., & Qureshi, F. (2021). Performance comparison of statistical and AI models for Pakistan’s exports forecasting. Economic Modelling, 94, 11–20. https://doi.org/10.1016/j.econmod.2020.10.002

Qiu, Y., Xu, J., & Wang, S. (2023). Journal of Economic Behavior & Organization, 208, 143–156. https://doi.org/10.1016/j.jebo.2023.01.008

Rahman, M. M., & Mohamad, A. (2023). Heliyon, 9(1), e12799. https://doi.org/10.1016/j.heliyon.2022.e12799

Silva, D. R., & Melo, M. T. (2021). Transportation Research Part E, 147, 102230. https://doi.org/10.1016/j.tre.2020.102230

Tang, X., & He, L. (2023). Sustainable Cities and Society, 94, 104662. https://doi.org/10.1016/j.scs.2023.104662

UNCTAD. (2023). World Trade Report. https://unctad.org

Wang, J., & Zhao, X. (2021). IEEE Access, 9, 103499–103512. https://doi.org/10.1109/ACCESS.2021.3098983

World Bank. (2023). World Development Indicators. https://data.worldbank.org

Wu, T., Chen, K., & Yan, M. (2023). IEEE Transactions on Neural Networks and Learning Systems, 34(1), 21–33.

Yang, J., Zhang, T., & Xu, L. (2022). Transport Policy, 116, 113–125. https://doi.org/10.1016/j.tranpol.2021.10.011

Zhai, Y., Chen, X., & Lin, Z. (2022). Information Sciences, 585, 87–102. https://doi.org/10.1016/j.ins.2021.11.024

Zhang, B., & Liu, J. (2020). SpringerPlus, 9, 1002–1015.

Zhang, Y., & Lin, C. (2021). Deep learning for macroeconomic forecasting: Evidence from China’s trade data. Applied Economics Letters, 28(17), 1524–1528. https://doi.org/10.1080/13504851.2020.1819774

Zhou, Y., Ma, Y., & Li, F. (2022). Decision Support Systems, 158, 113775. https://doi.org/10.1016/j.dss.2022.113775




DOI: https://doi.org/10.26760/mindjournal.v10i2.130-144

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (Print): 2338-8323 | ISSN (Online): 2528-0902

Dipublikasikan oleh:
Program Studi Informatika, Institut Teknologi Nasional Bandung

Alamat:
Gedung 2 Informatika, Jl. PHH Mustofa No. 23, Bandung 40124, Indonesia

Kontak:
Telp: +62-22-7272215 (ext. 181) Fax: +62-22-7202892

Email: mind.journal@itenas.ac.id

______________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License