Sarana Pelaporan Angka Bebas Jentik dan Deteksi Jentik Nyamuk menggunakan Deep Learning

DIA BITARI MEI YUANA, IRA AMELIA AGASTA, MUHAMMAD ADI SAPUTRO, ETIK AINUN ROHMAH

Sari


Abstrak

Demam Berdarah Dengue (DBD) masih menjadi masalah kesehatan utama di Indonesia. Kabupaten Jember mencatat 1.627 kasus pada tahun 2024, dengan Angka Bebas Jentik (ABJ) hanya mencapai rata-rata 92%, di bawah standar nasional >95%. Penelitian ini mengembangkan sistem deteksi jentik nyamuk otomatis menggunakan metode Deep Learning berbasis CNN dan GRU. Fitur visual diekstraksi melalui model InceptionV3, kemudian dianalisis secara sekuensial oleh GRU untuk klasifikasi larva. Hasil menunjukkan model mencapai akurasi pelatihan dan pengujian dengan performa optimal pada epoch ke-20 sebesar 99.19%, loss 0.0419. Jika dibandingkan dengan metode sebelumnya (AOA) yang hanya mencapai 84%, pendekatan ini terbukti lebih akurat dan tahan terhadap variasi kondisi data.

Kata kunci: Demam Berdarah Dengue, Aedes aegypti, Angka Bebas Jentik, Deep Learning, Gated Recurrent Unit, Deteksi Otomatis

Abstract

Dengue Hemorrhagic Fever (DHF) remains a major public health issue in Indonesia. In 2024, Jember Regency recorded 1,627 cases, with the Larvae Free Index (LFI) averaging only 92%, below the national standard of >95%. This study developed an automatic mosquito larvae detection system using a Deep Learning approach based on CNN and GRU. Visual features were extracted using the InceptionV3 model and then analyzed sequentially by the GRU for larval classification. The results showed that the model achieved optimal training and testing performance at the 20th epoch with 99.19% accuracy and a loss of 0.0419. Compared to the previous method AOA, which achieved only 84% accuracy, this approach proved to be more accurate and robust against variations in data conditions.

Keywords: Dengue Hemorrhagic Fever, Aedes aegypti, Larvae-Free Rate, Deep Learning, Gated Recurrent Unit, Automated Detection



Teks Lengkap:

PDF

Referensi


Ade Verilia, F., Firdaus, R., & Dian Septama, H. (2023). Pengembangan Pengenalan Aktivitas Manusia Secara Real Time Menggunakan Metode Convolutional Neural Network dan Deep Gated Recurrent Unit. Jurnal Ilmiah Multidisiplin, 2(2).

ayosehat.kemkes.go.id. (n.d.). Demam Berdarah Dengue. Retrieved February 9, 2025, from https://ayosehat.kemkes.go.id/topik/demam-berdarah-dengue

Budianto, W., Herwindiati, D. E., & Hendryli, J. (2023). PENGENALAN BENTUK WAJAH DENGAN METODE CONVOLUTIONAL NEURAL NETWORK UNTUK PEMILIHAN MODEL KACAMATA SECARA ONLINE. Infotech: Journal of Technology Information, 9(2), 129–136. https://doi.org/10.37365/jti.v9i2.176

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. http://arxiv.org/abs/1406.1078

dinkes.jatimprov.go.id. (n.d.). Profil Kesehatan Provinsi Jawa Timur Tahun 2023. Retrieved February 9, 2025, from https://dinkes.jatimprov.go.id/index.php?r=site/file_list&id_file=10&id_berita=8

Helen Josephine, V. L., Nirmala, A. P., & Alluri, V. L. (2021). Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance of Classification Model. IOP Conference Series: Materials Science and Engineering, 1131(1), 012007. https://doi.org/10.1088/1757-899x/1131/1/012007

jatim.tribunnews.com. (n.d.). Awal 2025, Ada 293 Kasus DBD di Jember, 56 Orang Positif dan Satu Meninggal Dunia. Retrieved February 9, 2025, from https://jatim.tribunnews.com/2025/01/18/awal-2025-ada-293-kasus-dbd-di-jember-56-orang-positif-dan-satu-meninggal-dunia

kemkes.go.id. (2023). Waspada Penyakit Musim Hujan. https://kemkes.go.id/id/waspada-penyakit-di-musim-hujan

Lesmana, O., & Halim, R. (2020). GAMBARAN TINGKAT KEPADATAN JENTIK NYAMUK AEDES AEGYPTI DI KELURAHAN KENALI ASAM BAWAH KOTA JAMBI. Density Level Of Aedes Aegypti Mosquito Description in Kenali Asam Bawah District, Jambi City. In Jurnal Kesmas Jambi (Vol. 4, Issue 2). JKMJ.

Noshirma, M., Willa, R. W., Kazwaini, M., & Wibowo, A. (2020). Deteksi Virus Dengue pada Nyamuk Aedes aegypti (Diptera: Culicidae) yang Tersebar di Kabupaten Sumba Timur dan Sumba Barat Daya. Jurnal Vektor Penyakit, 14(1), 57–64. https://doi.org/10.22435/vektorp.v14i1.2421

radarjember.net. (n.d.). ribuan-kasus-dbd-di-jember-ini-kata-kepala-dinas-kesehatan-jember. Retrieved February 9, 2025, from https://radarjember.net/posts/ribuan-kasus-dbd-di-jember-ini-kata-kepala-dinas-kesehatan-jember

Reza Rismawandi, I Gede Pasek Suta Wijaya, & Gibran Satya Nugraha. (2022). IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK PENEGENALAN HURUF AKSARA SASAK PADA ANDROID (Implementation Convolutional Neural Network Method for Recognition of Sasak Characters in Android). http://jtika.if.unram.ac.id/index.php/JTIKA/

Sesulihatien, W. T., Yuana, D. B. M., Basuki, A., Harsono, T., Alimudin, A., & Rohmah, E. A. (2020). Mobile sensing in aedes aegypti larva detection with biological feature extraction. Bulletin of Electrical Engineering and Informatics, 9(4), 1454–1460. https://doi.org/10.11591/eei.v9i4.1993

Siregar, S., Mulyani, S., Rizky, V. A., Akmal, D., & Sutriyawan, A. (2023). Pengaruh Keberadaan Jentik dan Perilaku 3M Plus terhadap Kejadian Demam Berdarah Dengue. Jurnal Kesehatan Komunitas (Journal of Community Health), 9(3), 456–463. https://doi.org/10.25311/keskom.vol9.iss3.1392

Yuana, D. B. M., Sesulihatien, W. T., Basuki, A., Harsono, T., Alimudin, A., & Rohmah, E. A. (2020). Mobile sensing in aedes aegypti larva detection with biological feature extraction. Bulletin of Electrical Engineering and Informatics, 9(4), 1454–1460. https://doi.org/10.11591/eei.v9i4.1993




DOI: https://doi.org/10.26760/mindjournal.v10i1.89-98

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (Print): 2338-8323 | ISSN (Online): 2528-0902

Published by:
Department of Informatics, Institut Teknologi Nasional Bandung

Address:
Building 2, Jl. PHH Mustofa No. 23, Bandung 40124, Indonesia

Contact:
Phone: +62-22-7272215 (ext. 181) Fax: +62-22-7202892

Email: mind.journal@itenas.ac.id

______________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License