Integrasi Logika Fuzzy dengan Teknologi Cerdas: Tinjauan Sistematis atas Peluang, Tantangan, dan Arah Masa Depan

YOULLIA INDRAWATY NURHASANAH, EMA KURNIA, SUTARTI SUTARTI

Sari


ABSTRAK
Pengembangan sistem logika fuzzy telah mengalami kemajuan pesat sejak awal diperkenalkan. Studi ini menyajikan tinjauan literatur untuk mengeksplorasi berbagai metodologi logika fuzzy dan aplikasi di berbagai sektor, seperti sistem kontrol, prediksi cuaca, diagnosa medis, dan lainnya. Kajian ini juga mencakup integrasi fuzzy dengan teknologi modern seperti IoT, Big Data, dan kecerdasan buatan (AI), yang telah mendorong penerapan lebih luas dan efisien. Selain menyoroti pencapaian, makalah ini membahas tantangan dalam interpretabilitas, efisiensi komputasi, dan adaptabilitas metode fuzzy dalam menghadapi kompleksitas teknologi dan data modern. Studi ini mengkaji pentingnya pengembangan lebih lanjut terhadap integrasi dengan AI untuk memastikan relevansi dan kontribusi logika fuzzy terhadap solusi cerdas di masa depan. Dengan demikian, penelitian ini menyediakan arah yang strategis untuk eksplorasi lebih lanjut, terutama terkait tantangan teknis dan peluang inovasi dalam domain ini.
Kata kunci: AI, Big Data, IoT, Logika Fuzzy, Tantangan Teknologi

ABSTRACT

The development of fuzzy logic systems has progressed rapidly since its introduction. This study presents a review of recent literature to explore various fuzzy logic methodologies and applications in various sectors, such as control systems, weather prediction, medical diagnosis, and others. The review also covers the integration of fuzzy with modern technologies such as IoT, Big Data, and AI, which has driven wider and more efficient applications. In addition to highlighting achievements, the paper discusses challenges in computational efficiency, and adaptability of fuzzy methods in the face of modern technological and data complexity. The study emphasises the importance of further development towards interpretability and integration with AI to ensure the relevance and contribution of fuzzy logic to future intelligent solutions. Thus, this research provides a strategic direction for further exploration, especially regarding technical challenges and innovation opportunities in this domain.
Keywords: AI, Big data, Fuzzy Logic, IoT, Technology Challenges


Teks Lengkap:

PDF

Referensi


Ahmadi, H., Huo, L., Arji, G., Sheikhtaheri, A., & Zhou, S. M. (2024). Early diagnosis of Parkinson’s disease using a hybrid method of least squares support vector regression and fuzzy clustering. Biocybernetics and Biomedical Engineering, 44(3), 569–585. https://doi.org/10.1016/j.bbe.2024.08.009

Baldan, F. J., & Martinez, L. (2024). Time series features and fuzzy memberships combination for time series classification. Neurocomputing, 606(August). https://doi.org/10.1016/j.neucom.2024.128368

Casari, M., Kowalski, P. A., & Po, L. (2024). Optimisation of the adaptive neuro-fuzzy inference system for adjusting low-cost sensors PM concentrations. Ecological Informatics, 83(March), 102781. https://doi.org/10.1016/j.ecoinf.2024.102781

Dore, P., Chakkor, S., Oualkadi, A. El, & Baghouri, M. (2023). Real-time intelligent system for wind turbine monitoring using fuzzy system. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 3(July 2022), 100096. https://doi.org/10.1016/j.prime.2022.100096

Elaggoune, Z., Maamri, R., & Boussebough, I. (2020). A fuzzy agent approach for smart data extraction in big data environments. Journal of King Saud University - Computer and Information Sciences, 32(4), 465–478. https://doi.org/10.1016/j.jksuci.2019.05.009

Figueroa-Garcia, J. C., Neruda, R., & Hernandez-Perez, G. J. (2024). On cosine fuzzy sets and uncertainty quantification. Engineering Applications of Artificial Intelligence, 138(PA), 109241. https://doi.org/10.1016/j.engappai.2024.109241

Guo, X., Zheng, Z., Cheong, K. H., Zou, Q., Tiwari, P., & Ding, Y. (2024). Sequence homology score-based deep fuzzy network for identifying therapeutic peptides. Neural Networks, 178(May), 106458. https://doi.org/10.1016/j.neunet.2024.106458

Hasan, M. M., Hossain, M. M., Rahman, M. M., Azad, A. K. M., Alyami, S. A., & Moni, M. A. (2023). FP-CNN: Fuzzy pooling-based convolutional neural network for lung ultrasound image classification with explainable AI. Computers in Biology and Medicine, 165(July 2022), 107407. https://doi.org/10.1016/j.compbiomed.2023.107407

Kamthan, S., & Singh, H. (2023). Hierarchical fuzzy deep learning system for various classes of images. Memories - Materials, Devices, Circuits and Systems, 4(November 2022), 100023. https://doi.org/10.1016/j.memori.2022.100023

Liang, J., & Liu, P. (2024). Shared manufacturing service evaluation based on intuitionistic fuzzy VIKOR. Heliyon, 10(8), e29250. https://doi.org/10.1016/j.heliyon.2024.e29250

Loganathan, S., Ramakrishnan, D., Sathiyamoorthy, M., & Azamathulla, H. M. (2024). Assessment of irrigational suitability of groundwater in Thanjavur district, Southern India using Mamdani fuzzy inference system. Results in Engineering, 21(November 2023), 101789. https://doi.org/10.1016/j.rineng.2024.101789

Lopez-Guauque, J. A., & Gil-Lafuente, A. M. (2020). Fifty years of fuzzy research: A bibliometric analysis and a long-term comparative overview. Journal of Intelligent and Fuzzy Systems, 38(5), 5413–5425. https://doi.org/10.3233/JIFS-179634

Luukka, P., & Stoklasa, J. (2024). Possibilistic mean based defuzzification for fuzzy expert systems and fuzzy control—LSD for general fuzzy sets. Journal of Computational and Applied Mathematics, 441(November 2023), 115663. https://doi.org/10.1016/j.cam.2023.115663

Mahmudah, R. S., Putri, D. I., Abdullah, A. G., Shafii, M. A., Hakim, D. L., & Setiadipura, T. (2024). Developing a Multi-Criteria Decision-Making model for nuclear power plant location selection using Fuzzy Analytic Hierarchy Process and Fuzzy VIKOR methods focused on socio-economic factors. Cleaner Engineering and Technology, 19(March), 100737. https://doi.org/10.1016/j.clet.2024.100737

Mariadoss, S., & Augustin, F. (2023). Enhanced sugeno fuzzy inference system with fuzzy AHP and coefficient of variation to diagnose cardiovascular disease during pregnancy. Journal of King Saud University - Computer and Information Sciences, 35(8), 101659. https://doi.org/10.1016/j.jksuci.2023.101659

Maroua, B., Laid, Z., Benbouhenni, H., Fateh, M., Debdouche, N., & Colak, I. (2024). Robust type 2 fuzzy logic control microgrid-connected photovoltaic system with battery energy storage through multi-functional voltage source inverter using direct power control. Energy Reports, 11(November 2023), 3117–3134. https://doi.org/10.1016/j.egyr.2024.02.047

Martinez, J. S., John, R. I., Hissel, D., & Pera, M. C. (2012). A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles. Information Sciences, 190, 192–207. https://doi.org/10.1016/j.ins.2011.12.013

Mersadek, M., Nagi, F., Permal, N., Ramasamy, A. A. P., & Azwin, A. (2024). Takagi-sugeno type 1-2 fuzzy linear output controller for two-area load frequency control. Systems and Soft Computing, 6(February), 200083. https://doi.org/10.1016/j.sasc.2024.200083

Ouifak, H., & Idri, A. (2023). On the performance and interpretability of Mamdani and Takagi-Sugeno-Kang based neuro-fuzzy systems for medical diagnosis. Scientific African, 20. https://doi.org/10.1016/j.sciaf.2023.e01610

P

atel, H. R., & Shah, V. A. (2022). Fuzzy Logic Based Metaheuristic Algorithm for Optimization of Type-1 Fuzzy Controller: Fault-Tolerant Control for Nonlinear System with Actuator Fault. IFAC-PapersOnLine, 55(1), 715–721. https://doi.org/10.1016/j.ifacol.2022.04.117

Pujaru, K., Adak, S., Kar, T. K., Patra, S., & Jana, S. (2024). A Mamdani fuzzy inference system with trapezoidal membership functions for investigating fishery production. Decision Analytics Journal, 11(May), 100481. https://doi.org/10.1016/j.dajour.2024.100481

Rahman, M. Z. U., Akbar, M. A., Leiva, V., Martin-Barreiro, C., Imran, M., Riaz, M. T., & Castro, C. (2024). An IoT-fuzzy intelligent approach for holistic management of COVID-19 patients. Heliyon, 10(1), e22454. https://doi.org/10.1016/j.heliyon.2023.e22454

Roy, S. K., Morshed, A., Mojumder, P., Hasan, M. M., & Islam, A. K. M. S. (2024). Innovative trend analysis technique with fuzzy logic and K-means clustering approach for identification of homogenous rainfall region: A long-term rainfall data analysis over Bangladesh. Quaternary Science Advances, 15(August), 100227. https://doi.org/10.1016/j.qsa.2024.100227

Sarebanzadeh, K., Hasheminejad, N., Alimohammadlou, M., & Es’haghi, M. (2024). Using fuzzy cognitive map in bow tie method for dynamic risk assessment of spherical storage tanks: A case study. Heliyon, 10(5), e26830. https://doi.org/10.1016/j.heliyon.2024.e26830

Shirinda, K., Kusakana, K., & Ostraszewski, M. (2024). Combinatorial optimization of a fuzzy logic-controlled grid connected photovoltaic with hybrid energy storage systems using time of use tariff. Journal of Energy Storage, 99(August). https://doi.org/10.1016/j.est.2024.113251

Slim, H., & Nadeau, S. (2020). A proposition for combining rough sets, fuzzy logic and FRAM to address methodological challenges in safety management: A discussion paper. Safety, 6(4), 1–23. https://doi.org/10.3390/safety6040050

Suyanto. (2021). Artificial Intelligence. Bandung: Penerbit Informatika.

Wozniak, M., Szczotka, J., Sikora, A., & Zielonka, A. (2024). Fuzzy logic type-2 intelligent moisture control system. Expert Systems with Applications, 238(PA), 121581. https://doi.org/10.1016/j.eswa.2023.121581

Yakubu, A. U., Xiong, S., Jiang, Q., Zhao, J., Wu, Z., Wang, H., … Wangsen, H. (2024). Fuzzy-based thermal management control analysis of vehicle air conditioning system. International Journal of Hydrogen Energy, 77(February), 834–843. https://doi.org/10.1016/j.ijhydene.2024.06.030

Yan, S. R., Mohammadzadeh, A., & Ghaderpour, E. (2024). Type-3 fuzzy logic and Lyapunov approach for dynamic modeling and analysis of financial markets. Heliyon, 10(13), e33730. https://doi.org/10.1016/j.heliyon.2024.e33730

Yousofnejad, Y., & Es’haghi, M. (2024). Reliability evaluation of a medical oxygen supply system by FTA based on intuitionistic fuzzy sets. Heliyon, 10(15), e34649. https://doi.org/10.1016/j.heliyon.2024.e34649




DOI: https://doi.org/10.26760/mindjournal.v10i1.1-17

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (Print): 2338-8323 | ISSN (Online): 2528-0902

Published by:
Department of Informatics, Institut Teknologi Nasional Bandung

Address:
Building 2, Jl. PHH Mustofa No. 23, Bandung 40124, Indonesia

Contact:
Phone: +62-22-7272215 (ext. 181) Fax: +62-22-7202892

Email: mind.journal@itenas.ac.id

______________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License