Klasifikasi Penyakit Stunting Menggunakan Algoritma Multi-Layer Perceptron

PUTRI INTAN ASHURI, INDAH ARDHIA CAHYANI, CHRISTIAN SRI KUSUMA ADITYA

Sari


Abstrak

Stunting adalah gangguan pertumbuhan dan perkembangan yang disebabkan kekurangan gizi yang ditandai dengan tinggi anak kurang dari dua kali standar deviasi yang ditetapkan oleh WHO. Kekurangan asupan gizi mengakibatkan menurunnya pertumbuhan anak, hal ini berhubungan dengan meningkatnya resiko sakit, kematian, hambatan pertumbuhan fisik maupun gangguan metabolisme tubuh. Beberapa metode telah dilakukan untuk membantu mengklasifikasi stunting pada anak salah satunya C4.5. Tujuan penelitian ini adalah mengklasifikasikan penyakit stunting menggunakan metode Multi-Layer Perceptron (MLP) dengan hyperparameter tuning RandomSearchCV. MLP memiliki beberapa kelebihan diantaranya mampu merepresentasikan hubungan lebih kompleks antara fitur input dan output, serta memproses data dalam berbagai bentuk, termasuk data tidak terstruktur. Penelitian ini menunjukan model MLP menggunakan hyperparameter tuning RandomSearchCV mendapatkan performa terbaik berdasarkan hasil evaluasi didapatkan accuracy sebesar 81.78%, precision 85.00%, recall 94.34%, dan F1-Score 89.43%.

Kata kunci: Stunting, Kekurangan gizi, Multi-Layer Perceptron (MLP), Hyperparameter tuning, RandomSearchCV

Abstract

 

Stunting is a growth and development disorder caused by malnutrition which is characterized by a child's height being less than twice the standard deviation set by WHO. Lack of nutritional intake results in decreased growth in children, this is associated with an increased risk of illness, death, physical growth restrictions and metabolic disorders. Several methods have been used to help classify stunting in children, one of which is C4.5. The aim of this research is to classify stunting using the Multi-Layer Perceptron (MLP) method with RandomSearchCV hyperparameter tuning. MLP has several advantages, including being able to represent more complex relationships between input and output features, as well as processing data in various forms, including unstructured data. This research shows that the MLP model using RandomSearchCV hyperparameter tuning got the best performance based on the evaluation results, which obtained accuracy of 81.78%, precision of 85.00%, recall of 94.34%, and F1-Score of 89.43%.

Keywords: author’s guideline, document’s template, format, style, abstract


Teks Lengkap:

PDF

Referensi


Anggreani, D., Herman, & Astuti, W. (2018). Kinerja Metode Naïve Bayes dalam Prediksi Lama Studi Mahasiswa Fakultas Ilmu Komputer. Seminar Nasional Ilmu Komputer Dan Teknologi Informasi, 3(2), 107–111. http://e-journals.unmul.ac.id/index.php/SAKTI/article/view/1843

Astarani, K., Idris, D. N. T., & Oktavia, A. R. (2020). Prevention of Stunting Through Health Education in Parents of Pre-School Children. STRADA Jurnal Ilmiah Kesehatan, 9(1), 70–77. https://doi.org/10.30994/sjik.v9i1.270

Amato, F., Mazzocca, N., Moscato, F., & Vivenzio, E. (2017, March). Multilayer perceptron: an intelligent model for classification and intrusion detection. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 686-691). IEEE.

Castro, W., Oblitas, J., Santa-Cruz, R., & Avila-George, H. (2017). Multilayer perceptron architecture optimization using parallel computing techniques. PloS one, 12(12), e0189369.

Hasan, T. T., Jasim, M. H., & Hashim, I. A. (2017). Heart Disease Diagnosis System based on Multi-Layer Perceptron neural network and Support Vector Machine. International Journal of Current Engineering and Technology, 77(55), 2277–4106.

Hasma, Y. A., & Silfianti, W. (2018). Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat. Jurnal Ilmiah Teknologi Dan Rekayasa, 23(2), 89–102. https://doi.org/10.35760/tr.2018.v23i2.2459

Jiang, X., & Xu, C. (2022). Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Journal of Clinical Medicine, 11(19). https://doi.org/10.3390/jcm11195772

Jyotiyana, M., & Kesswani, N. (2020). Classification and prediction of Alzheimer’s disease using multi-layer perceptron. International Journal of Reasoning-Based Intelligent Systems, 12(4), 238–247. https://doi.org/10.1504/IJRIS.2020.111785

Kemenkes RI. (2023). Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%. Kemenkes. https://www.kemkes.go.id/id/rilis-kesehatan/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244

Markoulidakis, I., Rallis, I., Georgoulas, I., Kopsiaftis, G., Doulamis, A., & Doulamis, N. (2021). Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. Technologies, 9(4). https://doi.org/10.3390/technologies9040081

Mediani, H. S., Setyawati, A., Hendrawati, S., Nurhidayah, I., & Firdianty, N. F. (2023). Pengaruh Faktor Maternal terhadap Insidensi Stunting pada Anak Balita di Negara Berkembang: Narrative Review. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 7(2), 1868–1886. https://doi.org/10.31004/obsesi.v7i2.4160

Ni Kadek Ary Indah Suryani, Oka Sudana, & Ayu Wirdiani. (2022). Forecasting Pneumonia Toddler Mortality Using Comparative Model ARIMA and Multilayer Perceptron. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 528–537. https://doi.org/10.29207/resti.v6i4.4106

Nurrokhman, M. Z. (2023). Perbandingan Algoritma Support Vector Machine dan Neural Network untuk Klasifikasi Penyakit Hati. Indonesian Journal of Computer Science, 12(4). https://doi.org/10.33022/ijcs.v12i4.3274

Panca Saputra, E., & Panca, E. (2020). Classification Using Artifical Neural Network Method in Protecting Credit Fitness. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 3(1), 50–56.

Panda, B. (2019). A survey on application of Population Based Algorithm on Hyperparameter Selection. April, 1–9. https://doi.org/10.13140/RG.2.2.11820.21128

Purbolaksono, M. D., Irvan Tantowi, M., Imam Hidayat, A., & Adiwijaya, A. (2021). Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 393–399. https://doi.org/10.29207/resti.v5i2.3008

Putri, T. A. E., Widiharih, T., & Santoso, R. (2023). Penerapan Tuning Hyperparameter Randomsearchcv Pada Adaptive Boosting Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung. Jurnal Gaussian, 11(3), 397–406. https://doi.org/10.14710/j.gauss.11.3.397-406

Rahmi, I., Susanti, M., Yozza, H., & Wulandari, F. (2022). Classification of Stunting in Children Under Five Years in Padang City Using Support Vector Machine. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 771–778. https://doi.org/10.30598/barekengvol16iss3pp771-778

Riyanto, U. (2018). Penerapan Algoritma Multilayer Perceptron (Mlp) Dalam Menentukan Kelayakan Kenaikan Jabatan: Studi Kasus Pt. Abc - Jakarta. JIKA (Jurnal Informatika), 2(1), 58–65. http://jurnal.umt.ac.id/index.php/jika/article/view/5481

Roder, M., Passos, L. A., Papa, J. P., & Rossi, A. L. D. (2023). Feature Selection and Hyperparameter Fine-Tuning in Artificial Neural Networks for Wood Quality Classification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14196 LNAI, 323–337. https://doi.org/10.1007/978-3-031-45389-2_22

Sharma, R., Kim, M., & Gupta, A. (2022). Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model. Biomedical Signal Processing and Control, 71(PA), 103101. https://doi.org/10.1016/j.bspc.2021.103101

Vashisth, S., Dhall, I., & Saraswat, S. (2020). Chronic kidney disease (CKD) diagnosis using multi-layer perceptron classifier. Proceedings of the Confluence 2020 - 10th International Conference on Cloud Computing, Data Science and Engineering, January 2020, 346–350. https://doi.org/10.1109/Confluence47617.2020.9058178

Venkateswara Reddy, L., & Damodaram, A. K. (2022). REMOVAL OF DUPLICATES IN DATABASE RELATIONS AND THE ASSOCIATED PROPAGATION MANAGEMENT. Article in International Journal of Advanced Research in Computer Science, 9(2). https://doi.org/10.26483/ijarcs.v9i2

Wahyudin, W. C., Hana, F. M., Prihandono, A., Kudus, U. M., No, J. G., Email, I., Semarang, P. K., Classifier, N. B., Naive, A., Classifier, B.,

Classifier, N. B., & Classifier, N. B. (2023). P Rediksi S Tunting P Ada B Alita D I R Umah S Akit K Ota. 2019, 32–36.

Wang, J., Xu, Z., & Che, Y. (2019). Power quality disturbance classification based on DWT and multilayer perceptron extreme learning machine. Applied Sciences (Switzerland), 9(11). https://doi.org/10.3390/app9112315

WHO. (2023). Joint Child Malnutrition Estimates. https://www.who.int/data/gho/data/themes/topics/joint-child-malnutrition-estimates-unicef-who-wb#:~:text=In 2022%2C 148.1 million children,for their height (overweight)

Wibawa, M. S., & Maysanjaya, I. M. D. (2018). Multi Layer Perceptron Dan Principal Component Analysis Untuk Diagnosa Kanker Payudara. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 7(1), 90. https://doi.org/10.23887/janapati.v7i1.12909

Yunus, M., Biddinika, M. K., & Fadlil, A. (2023). Classification of Stunting in Children Using the C4.5 Algorithm. Jurnal Online Informatika, 8(1), 99–106. https://doi.org/10.15575/join.v8i1.1062




DOI: https://doi.org/10.26760/mindjournal.v9i1.52-63

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (cetak) : 2338-8323  |  ISSN (elektronik) :  2528-0902

diterbitkan oleh:

Informatika Institut Teknologi Nasional Bandung

Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 181)  Fax. 7202892

Email : mind.journal@itenas.ac.id

____________________________________________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License