Pemanfaatan Metode Collaborative Filtering dengan Algoritma KNN pada Sistem Rekomendasi Produk
Sari
Salah satu permasalahan customer pada e-commerce adalah sulitnya menemukan produk yang diinginkan untuk dibeli. Sistem rekomendasi mampu menangani permasalahan tersebut dengan cara mengalisis data profil customer untuk menyaring produk yang sesuai dengan profil customer kemudian merekomendasikannya kepada customer tersebut. Untuk mengetahui hubungan antara produk dengan pengguna maka dapat memanfaatkan sistem rekomendasi. Ada beberapa permasalahan pada sistem rekomendasi yaitu sparsity data, missing value, dan duplikasi data yang sering ditemukan pada data berbasis rating seperti pada e-commerce. Untuk menyelesaikan masalah ini, maka diusulkan metode Item-based Collaborative Filtering dan algoritma K-Nearest Neighbor (KNN) dengan hasil evaluasi nilai MAE sebesar 1,05 dan RMSE sebesar 1,36 yang mampu menangani sistem rekomendasi dengan baik dengan tingkat kesalahan yang kecil.
Kata kunci: recommendation system, item-based collaborative filtering, KNN, Sparsity Data, Cold-Start.
AbstractIn e-commerce, one common customer problem is difficulty in finding the product they want to buy. This issue can be addressed through a recommendation system, which analyzes customer profile data to filter products that match the customer's profile and then recommends them. One way to establish the relationship between products and users is by using a recommendation system. However, recommendation systems often encounter problems such as data sparsity, missing values, and data duplication, particularly in rating-based data. To address these issues, the Item-based Collaborative Filtering method and the K-Nearest Neighbor (KNN) algorithm are proposed. Evaluation results show that these methods have MAE values of 1.05 and RMSE of 1.36, indicating their effectiveness in handling the recommendation system with a low error rate.Keywords: recommendation system, collaborative filtering, item-based CF, KNN
Teks Lengkap:
PDFReferensi
Abdallah, Z. S., & Webb, G. I. (2017). Encyclopedia of Machine Learning and Data Mining. Encyclopedia of Machine Learning and Data Mining, September 2018. https://doi.org/10.1007/978-1-4899-7687-1
Ajipradana, F. A. (2017). Sistem Rekomendasi Film Menggunakan Algoritma Item-based Collaborative Filtering dan Basis Data Graph. Universitas Diponegoro.
Brusilovsky, P., & Kobsa, A. (2007). The Adaptive Web. In The Adaptive Web (Vol. 4321, Issue January 2007). https://doi.org/10.1007/978-3-540-72079-9
Dwi Untari, Hastuti, K., Hidayat, E. Y., Dwi Untari, Limão, N., & Gaol, N. Y. L. (2010). Data Mining untuk Menganalisa Prediksi Mahasiswa Berpotensi Non-Aktif Menggunaka Metode Decision Tree C4.5. Fakultas Ilmu Komputer Universitas Dian Nuswantoro, 2013(November), 31–48.
Februariyanti, H., Laksono, A. D., Wibowo, J. S., & Utomo, M. S. (2021). Implementasi Metode Collaborative Filtering Untuk Sistem Rekomendasi Penjualan Pada Toko Mebel. Jurnal Khatulistiwa Informatika, IX(I), 43–50.
Felfernig, A., Friedrich, G., & Schmidt-Thieme, L. (2007). Introduction to the IEEE Intelligent Systems Special Issue: Recommender Systems. IEEE Intelligent Systems, 22(3), 18–21.
Imandoust, S. B., & Bolandraftar, M. (2013). Application of K-Nearest Neighbor ( KNN ) Approach for Predicting Economic Events : Theoretical Background. Int. Journal of Engineering Research and Applications, 3(5), 605–610.
Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., & Newell, C. (2012). Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction, 22(4–5), 441–504. https://doi.org/10.1007/s11257-011-9118-4
Lankford, S. (2020). Effective Tuning of Regression Models using an Evolutionary Approach: A Case Study. ACM International Conference Proceeding Series, 102–108. https://doi.org/10.1145/3442536.3442552
Lubis, Y. I., Napitupulu, D. J., & Dharma, A. S. (2020). Implementation of Hybrid Filtering (Collaborative and Content-based) Methods for the Tourism Recommendation System. 12th Conference on Information Technology and Electrical Engineering, 6–8.
Neighbor, M. M. K. (2018). Penerapan data mining untuk prediksi penjualan produk elektronik terlaris menggunakan metode k-nearest neighbor.
Oktora, R., & Susanty, W. (2013). Perancangan Aplikasi E-Commerce Dengan Sistem Rekomendasi Item-Based Collaborative Filltering. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 3(1). https://doi.org/10.36448/jmsit.v3i1.477
Prasetya, C. S. D. (2017). Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor. Jurnal Teknologi Informasi Dan Ilmu Komputer, 4(3), 194. https://doi.org/10.25126/jtiik.201743392
Rahardja, C. A., Juardi, T., & Agung, H. (2019). Implementasi Algoritma K-Nearest Neighbor Pada Website Rekomendasi Laptop. Jurnal Buana Informatika, 10(1), 75. https://doi.org/10.24002/jbi.v10i1.1847
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of Dimensionality Reduction in Recommender System A Case Study Technical Report CS-TR 00-043. Computer Science and Engineering Dept., University of Minnesota, December 2012.
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying CRISP-DM process model. Procedia Computer Science, 181(2019), 526–534.
Vozalis, E., & Margaritis, K. (2003). Analysis of Recommender Systems’ Algorithms. Hercma, September 2003, 1–14. http://lsa-svd-application-for-analysis.googlecode.com/svn-history/r72/trunk/LSA/Other/LsaToRead/hercma2003.pdf
DOI: https://doi.org/10.26760/mindjournal.v9i1.113-123
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.