Identifikasi Gangguan Degradation Fault pada Photovoltaic Array berbasis Artificial Neural Network
Abstract
ABSTRAK
Energi terbarukan sudah mulai mendominasi dunia sejak puluhan tahun lalu, terutama listrik tenaga surya. Pada setiap instalasi PV terdapat gangguan yang sering terjadi, salah satunya adalah degradation fault. degradation fault merupakan jenis gangguan berupa perubahan warna pada lapisan Ethylene Vinyl Acetate dari yang berwarna putih menjadi kuning hingga kecoklatan. Perubahan warna tersebut disebabkan oleh usia pemakaian dan suhu yang terlalu panas dan dapat menyebabkan penurunan arus yang sangat drastis. Kejadian ini mengakibatkan penurunan Isc mencapai 13%. Hal ini tidak baik jika terus dibiarkan pada instalasi solar panel. Oleh karena itu, pada jurnal ini akan membahas pengidentifikasian degradation fault pada array PV dengan Artificial Neural Network. ANN akan mengidentifikasi adanya penurunan arus pada PV array. Dari hasil yang didapatkan bahwa penurunan arus mencapai 12% dan dapat mengidentifkasi adanya degradation fault.
Kata kunci: degradation fault, discoloration, Ethylene Vinyl Acetate , short circuit current, artificial neural network
Â
ABSTRACT
Renewable energy has started to dominate the world since decades ago, especially solar electricity. In every PV installation there are disturbances that often occur, one of which is a degradation fault. Degradation fault is a type of disturbance in the form of discoloration of the Ethylene Vinyl Acetate layer from white to yellow to brownish. The discoloration is caused by age of use and temperatures that are too hot and can cause a very drastic decrease in current. This incident resulted in a decrease in Isc reaching 13%. This is not good if it continues to be left on solar panel installations. Therefore, this journal will discuss the identification of degradation faults in PV arrays with Artificial Neural Networks. ANN will identify a decrease in current in the PV array. From the results obtained that the decrease in current reaches 12% and can identify a degradation fault.
Keywords: degradation fault, discoloration, Ethylene Vinyl Acetate , short circuit current, artificial neural network
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Afifah, A. N. N., Indrabayu, Suyuti, A., & Syafaruddin. (2021). A review on image processing techniques for damage detection on photovoltaic panels. ICIC Express Letters, 15(7), 779–790.
Akraa, M. A., Hassan, A. S., & Jawad, M. J. H. (2019). Degradation Influence of Ethylene Vinyl Acetate Copolymer (EVA) in Photo-Voltaic Modules: The Reason and Effect. A Review. International Journal of Engineering and Information Systems (IJEAIS), 3.
Al-Ezzi, A. S., & Ansari, M. N. M. (2022). Photovoltaic Solar Cells: A Review. Applied System Innovation, 5(4). https://doi.org/10.3390/asi5040067
Arani, M. Sabbaghpur., & Hejazi, M. A. (2016). The comprehensive study of electrical faults in PV arrays. Journal of Electrical and Computer Engineering, 2016. https://doi.org/10.1155/2016/8712960
de Oliveira, M. C. Carvalho., Cardoso, A. S. Diniz., Viana, M. M., & Lins, V. de F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299–2317. Elsevier Ltd.
Dhoke, A., Sharma, R., & Saha, T. K. (2018). PV module degradation analysis and impact on settings of overcurrent protection devices. Solar Energy, 160, 360–367.
Ghosh, R., Das, Swagat., & Panigrahi, C. K. (2018). Classification Of Different Types Of Faults in a Photovoltaic System. 2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC).
Khalil, I. U., Ul-Haq, A., Mahmoud, Y., Jalal, M., Aamir, M., Ahsan, M. U., & Mehmood, K. (2020). Comparative Analysis of Photovoltaic Faults and Performance Evaluation of its Detection Techniques. IEEE Access, 8, 26676–26700.
Kim, J., Rabelo, M., Padi, S. P., Yousuf, H., Cho, E. C., & Yi, J. (2021). A review of the degradation of photovoltaic modules for life expectancy. Energies, 14(14).
Naskar, M., V, L. N., & Ganga, S. (2017). Investigation of the Degradation of EVA Encapsulation of Photovoltaic Module under Different Stress Factors. 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Rupnagar, India, (pp. 398-402).
Nylund, S., & Barbari, Z. (2019). Study of Defects In PV Modules : UV fluorescence and Thermographic photography for Photovoltaics (PV) Field Application.
Park, N. C., Jeong, J. S., Kang, B. J., & Kim, D. H. (2013). The effect of encapsulant discoloration and delamination on the electrical characteristics of photovoltaic module. Microelectronics Reliability, 53(9–11), 1818–1822. https://doi.org/10.1016/j.microrel.2013.07.062
Pei, T., & Hao, X. (2019). A fault detection method for photovoltaic systems based on voltage and current observation and evaluation. Energies, 12(9).
Rahman, T., Al Mansur, A., Hossain, M. S. H., Rahman, Md. S., Ashique, R. H., Houran, M. A., Elavarasan, R. M., & Hossain, E. (2023). Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management. Energies, 16(9).
Umar, N. H., Gupta, P., Bora, B., & Banerjee, C. (2019). Discoloration of photovoltaic module and correlation with electrical parameters degradation. International Journal of Engineering and Advanced Technology, 8(6), 2450–2452.
Youssef, A., El-Telbany, M., & Zekry, A. (2017). The role of artificial intelligence in photovoltaic systems design and control: A review. Renewable and Sustainable Energy Reviews, 78, 72–79.
Zola, F., Nurcahyo, G. W., & Santony, J. (2018). Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa. Jurnal Teknologi Dan Open Source, 1(1).
DOI: https://doi.org/10.26760/elkomika.v12i1.36
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.