Analisis Kinerja Jaringan 5G dengan Pengkodean QC-LDPC dan Polar
Abstract
ABSTRAK
Jaringan 5G telah menjadi penanda penting dalam evolusi teknologi nirkabel yang menawarkan kecepatan dan kinerja yang luar biasa untuk memenuhi kebutuhan konektivitas yang semakin meningkat. Dalam jaringan 5G, pengkodean kanal merupakan elemen penting dalam memastikan pengiriman data yang handal dan efisien. Penelitian ini mengkaji sistem 5G pada frekuensi 26 GHz dan bandwidth 200 MHz menggunakan Orthogonal Frequency Division Multiplexing (OFDM) dengan ukuran Fast Fourier Transform (FFT) sebesar 256 dan modulasi Binary Phase Shift Keying (BPSK). Penelitian ini mengevaluasi perbandingan penambahan channel coding yaitu QC-LDPC dan polar codes. Performansi QC-LDPC codes pada BER sebesar 10-4 dapat dicapai dengan SNR 𛾠= 17 ð‘‘ðµ untuk kode QC-LDPC dan SNR 𛾠= 15 ð‘‘ðµ untuk polar codes. Hasil menunjukkan bahwa penambahan channel coding mampu menangkap diversity order kedua dan performansi polar codes lebih baik dibandingkan dengan QC-LDPC.
Kata kunci: 5G, BPSK, OFDM, Polar, QC-LDPC
Â
ABSTRACT
The 5G network has become a significant milestone in the evolution of wireless technology, offering remarkable speed and performance to meet the growing demands of connectivity. In the 5G network, channel coding is a crucial element to ensure reliable and efficient data transmission. This research evaluate the 5G network operating at a frequency of 26 GHz and a bandwidth of 200 MHz, utilizing Orthogonal Frequency Division Multiplexing (OFDM) with an Fast Fourier Transform (FFT) size of 256 and Binary Phase Shift Keying (BPSK) modulation. The research evaluates the comparison of adding channel coding using QC-LDPC and polar codes. The performance of QC-LDPC codes at a bit error rate (BER) of 10-4 can be achieved with an SNR of 𛾠= 17 ð‘‘ðµ for QC-LDPC codes and an SNR of 𛾠= 15 ð‘‘ðµ for polar codes. The results shows the addition of channel coding is capable of capturing second-order diversity, and polar codes outperforms QC-LDPC in terms of performances.
Keywords: 5G, BPSK, OFDM, Polar, QC-LDPC
Keywords
Full Text:
PDF (Bahasa Indonesia)References
GPP. (2020). 5G ; NR; Multiplexing and channel coding Release 16. TS 38.212 Version 16.2.0, 0. https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
Alencar, R. T. De, & Ara, M. De. (2014). Modulation Diversity Effects in Rayleigh Fading Multipath Channels. August, 1–6. https://doi.org/10.1109/ITS.2014.6948018
Arora, K., Singh, J., & Randhawa, Y. S. (2020). A survey on channel coding techniques for 5G wireless networks. Telecommunication Systems, 73(4), 637–663. https://doi.org/10.1007/s11235-019-00630-3
Belhadj, S., Lakhdar, A. M., & Bendjillali, R. I. (2021). Performance comparison of channel coding schemes for 5G massive machine type communications. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 902. https://doi.org/10.11591/ijeecs.v22.i2.pp902-908
Benson, P. M., Titus, T. J., & Yuvaraju, M. (2020). BER Analysis of Channel Coding Techniques for 5G Networks. IOP Conference Series: Materials Science and Engineering, 932(1), 012091. https://doi.org/10.1088/1757-899X/932/1/012091
Bioglio, V., Condo, C., & Land, I. (2021). Design of Polar Codes in 5G New Radio. IEEE Communications Surveys & Tutorials, 23(1), 29–40. https://doi.org/10.1109/COMST.2020.2967127
Bodkhe, V. D. (2018). Implementation of FFT/IFFT Blocks for Orthogonal Frequency Division Multiplexing (OFDM). 5.
Dhuheir, M., & Öztürk, S. (2018). Polar Codes Applications for 5G Systems. Journal of Institue Of Science and Technology, 34(3), 49-65.
Heider, I. A. (2018). Improvement of Fading Channel Modeling Performance for Wireless Channel. International Journal of Electrical and Computer Engineering (IJECE), 8(3), 1451. https://doi.org/10.11591/ijece.v8i3.pp1451-1459
Kongara, G., He, C., Yang, L., & Armstrong, J. (2019). A Comparison of CP-OFDM, PCC-OFDM and UFMC for 5G Uplink Communications. IEEE Access, 7, 157574–157594. https://doi.org/10.1109/ACCESS.2019.2949792
Kumar, A., & Krishnan, P. (2022). RoFSO system based on BCH and RS coded BPSK OFDM for 5G applications in smart cities. Optical and Quantum Electronics, 54(1), 0–17. https://doi.org/10.1007/s11082-021-03392-y
Lakshmi, M. V., Reddy, G. G., Sucharitha, A., Akshara, N., & Vaishnavi, N. (2022). Performance Comparison of Channel Coding Techniques for OFDM System. IOP Conference Series: Materials Science and Engineering, 1272(1), 012012. https://doi.org/10.1088/1757-899x/1272/1/012012
Lavanya, P., Satyanarayana, P., & Ahmad, A. (2019). Suitability of OFDM in 5G Waveform – A Review. Oriental Journal of Computer Science and Technology, 12(Issue 3), 66–75. https://doi.org/10.13005/ojcst12.03.01
Liu, X., Xu, T., & Darwazeh, I. (2020). Coexistence of Orthogonal and Non-orthogonal Multicarrier Signals in Beyond 5G Scenarios. 2020 2nd 6G Wireless Summit (6G SUMMIT), 1–5. https://doi.org/10.1109/6GSUMMIT49458.2020.9083780
Marijanovic, L., Schwarz, S., & Rupp, M. (2018). Optimal Numerology in OFDM Systems Based on Imperfect Channel Knowledge. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1–5. https://doi.org/10.1109/VTCSpring.2018.8417548
Nozaki, T., & Isaka, M. (2022). LDPC Codes for Communication Systems: Coding Theoretic Perspective. IEICE Transactions on Communications, E105.B(8), 894–905. https://doi.org/10.1587/transcom.2021EBI0001
Prahland, D., Puthuraya, A., Srinivasan, G., Harsh, K., & Reddy, K. (2023). Polar Coding in 5G Systems. International Research Journal on Advanced Science Hub, 5(5), 2582-4376.
Osseiran, A., Monserrat, J. F., & Marsch, P. (2016). 5G Mobile and Wireless Communications Technology. New York : Cambridge University Press
Venkatesan, S., & Valenzuela, R. A. (2016). OFDM for 5G: Cyclic prefix versus zero postfix, and filtering versus windowing. 2016 IEEE International Conference on Communications (ICC), 1–5. https://doi.org/10.1109/ICC.2016.7510757
Wahyuningrum, R. D., Ni’Amah, K., & Larasati, S. (2021). Model Kanal 5G dengan Pengaruh Kelembapan pada Frekuensi 3,3 GHz dan Bandwidth 99 MHz Berbasis Convolutional Codes. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(4), 878. https://doi.org/10.26760/elkomika.v9i4.878
Wahyuningrum, R. D., Pramudya, D., & Permatasari, I. (2021). 5G Channel Model Under the Effect of Human Blockage at 3.5 GHz Frequency. CESS (Journal of Computer Engineering, System and Science), 7(1), 31. https://doi.org/10.24114/cess.v7i1.27291
Xu, J., Yuan, Y., & Yang, C. (2022). Channel Coding in 5G New Radio (1 ed.). CRC Press. https://doi.org/10.1201/9781003336174
DOI: https://doi.org/10.26760/elkomika.v12i1.190
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.