Kendali Aliran dan Tekanan Adaptif dengan Metode Artificial Neural Network pada Alat Terapi Oksigen

ABYANUDDIN SALAM, NUR WISMA NUGRAHA, WILDAN ALFARIDHANI

Abstract


ABSTRAK

Penelitian ini bertujuan untuk merancang prototype pengendalian aliran dan tekanan adaptif pada alat terapi oksigen. Sensor yang digunakan yaitu sensor MAX30100 untuk membaca saturasi oksigen dan sensor MLX90614 sebagi sensor yang dapat menghitung Respiration Rate atau laju napas. Metode yang digunakan yaitu Artificial Neural Network yang diimplentasikan pada Raspberry Pi. Sistem akan bekerja dengan memprediksi nilai laju aliran dan tekanan oksigen yang diperlukan pasien berdasarkan nilai Respiration Rate (RR). Artificial Neural Network (ANN) dapat diimplmentasikan pada rancangan alat terapi oksigen, dengan persentase akurasi Output ANN terhadap perhitungan yaitu 99,39%, sedangkan persentase akurasi ANN terhadap pembacaan aliran oksigen yang terbaca pada sensor flow sebesar yaitu 94,73% dan persentase akurasi ANN terhadap pembacaan tekanan oksigen pada sensor pressure sebesar 89,03%.

Kata kunci: Terapi Oksigen, Respiration Rate, Artificial Neural Network

 

ABSTRACT

This research aims to design a prototype of flow and pressure control in an adaptive oxygen therapy device. The sensors used are MAX30100 sensors to read oxygen saturation and MLX90614 sensors as sensors that can calculate Respiration Rate or breath rate. The method used is Artificial Neural Network which is implemented on Raspberry Pi. The system will work by predicting the value of the flow rate and oxygen pressure required by the patient based on the Respiration Rate (RR) value. Artificial Neural Network (ANN) can be implemented in the design of oxygen therapy devices, with the percentage of ANN Output accuracy to the calculation of 99.39%, while the percentage of ANN accuracy on oxygen flow readings on the flow sensor is 94.73% and the percentage of ANN accuracy on oxygen pressure readings on the pressure sensor is 89.03%.

Keywords: Oxygen Therapy, Respiration Rate, Artificial Neural Network


Keywords


Terapi Oksigen; Respiration Rate; Artificial Neural Network

References


Anekawati, A., Wibisono, A., & Annisa, S. (2021). Kadar Oksigen Terbaik Sebagai Daya Tarik Wisata Kesehatan Pada Pulau Gili Iyang. PERFORMANCE: Jurnal Bisnis & Akuntansi, 11(1), 63–74. https://doi.org/10.24929/feb.v11i1.1317

Ardhianto, F. W. (n.d.). Design Of Adaptive Oxygen Flow Control For Oxygen Therapy Devices. Mv.

Aryanto, D., & Augusman, V. (2021). Penerapan Machine Learning Untuk Mengategorikan Sampah Plastik Rumah Tangga. Jurnal TIMES, 10(1), 39–43. https://ejournal.stmiktime.ac.id/index.php/jurnalTIMES/article/view/649

Dai, M., Zhang, Z. S., Liu, Z. G., & Yin, D. F. (2013). Control module design for a continuous positive airway pressure ventilator. Applied Mechanics and Materials, 321–324, 1657–1661. https://doi.org/10.4028/www.scientific.net/AMM.321-324.1657

Irawati, I. D., Hadiyoso, S., Alfaruq, A., Novianti, A., & Rizal, A. (2022). Self-Oxygen Regulator System for COVID-19 Patients Based on Body Weight, Respiration Rate, and Blood Saturation. Electronics (Switzerland), 11(9). https://doi.org/10.3390/electronics11091380

Kane, B., Decalmer, S., & O’Driscoll, B. R. (2013). Emergency oxygen therapy: From guideline to implementation. Breathe, 9(4), 247–254. https://doi.org/10.1183/20734735.025212

Kesuma, M. F., & T, M. Z. S. (2020). Perbandingan Sistem Kendali PID dan Fuzzy Logic Pada Quadcopter Jurusan Teknik Elektro , Fakultas Teknologi Industri Universitas Bunghatta Padang – Indonesia fajarkesuma07@gmail.com. 2020.

Khairunnisa, S., Gede, I. D., Wisana, H., Priyambada, I., Nugraha, C., & Elektromedik, J. T. (2018). Rancang Bangun Pulse Oximeter Berbasis Iot (Internet of Things). E-Journal Poltekes Kemenkes Surabaya, 1–9.

Malaekah, E., Al Awam, K., Farouk, H., Abuabid, E., Mukhanov, V. V., Alahmari, A., & Alshagag, H. (2022). Designing Hybrid Mechanical Ventilator System Based on Arduino and Raspberry Pi 4. Journal of Medical Devices, Transactions of the ASME, 16(1), 0–7. https://doi.org/10.1115/1.4054036

Nugraha, N. W. (n.d.). Design of Adaptive Oxygen Flow And Pressure Control For Oxygen Therapy Devices Using The Fuzzy Logic Method.

Nugroho, C. R., Yuniarti, E., & Hartono, A. (2020). Alat Pengukur Saturasi Oksigen Dalam Darah Menggunakan Metode Photoplethysmograph Reflectance. Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics , 3(2), 84–93. https://doi.org/10.15408/fiziya.v3i2.17721

Purba, L. L. S., & Harefa, N. (2020). Pengaruh Kandungan Oksigen Udara Sekolah Terhadap Konsentrasi Belajar Siswa SMAN 9 Jakarta Timur. Jurnal EduMatSains, 4(2), 169–182. https://media.neliti.com/media/publications/14469-ID-analisa-kadar-co-dan-no2-diudara-dan-keluhan-gangguan-saluran-pernapasan-pada-p.pdf

Sahid Dwi Prasetyo, Rizka Hayyu Nafi’ah, G. S. (2020). Asuhan Keperawatan Gawat Darurat Pada Pasien Dengan Stroke Hemoragik di Ruangan Instalasi Gawat Darurat. Universitas Kusuma Husada Surakarta.

Salam, A., Rokhim, I., Supriyanto, H., Suryatini, F., & Wiyono, A. (2021). Rancang Bangun Ventilator Controller Berbasis Tekanan dengan Teknologi Internet of Things. JTERA (Jurnal Teknologi Rekayasa), 6(1), 53. https://doi.org/10.31544/jtera.v6.i1.2021.53-60

Sita Radhakrishnan, Suresh G. Nair, J. I. (2022). No Title. Biomedical Signal Processing and Control, Volume 71,(Multilayer perceptron neural network model development for mechanical ventilator parameters prediction by real time system learning). https://doi.org/https://doi.org/10.1016/j.bspc.2021.103170

Timorremboko, F., & Karya, O. T. (2020). Implementasi Jaringan Syaraf Tiruan Pada Kendali Lampu Sorot Mobil Adaptif Berbasis Python. Jurnal Teknologi Elektro, 11(3), 142. https://doi.org/10.22441/jte.2020.v11i3.006




DOI: https://doi.org/10.26760/elkomika.v12i1.133

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License