A Comparison of Type-1 and Type-2 Fuzzy Logic Controller for Full Bridge Boost Converter on DC Microgrid System
Abstract
ABSTRAK
Dengan meningkatnya kebutuhan listrik, penurunan pasokan energi fosil, serta sulitnya pendistribusian listrik ke daerah terpencil merupakan beberapa masalah yang mendesak. Energi matahari melalui panel surya dapat digunakan untuk mendukung sistem DC Microgrid serta cocok untuk jaringan listrik skala kecil. Full Bridge Boost Converter dengan transformator frekuensi tinggi yang dikendalikan oleh Fuzzy Logic Type-1 (T1FL) dan Fuzzy Logic Type-2 (T2FL) merupakan salah satu pilihan yang dapat dilakukan untuk memaksimalkan pemanfaatan energi matahari sehingga dapat meningkatkan efisiensi serta keandalan sistem pada DC Microgrid dengan menjaga tegangan keluaran menjadi konstan. Dari hasil pengujian dapat diketahui bahwa dengan menggunakan T2FL dapat menjaga tegangan keluaran Full Bridge Boost Converter dapat mencapai tegangan setpoint 320V dengan kesalahan sebesar 0.16% dan stabil dalam 0.59742ms. Sementara, T1FL memerlukan 0.7161ms untuk mencapai setpoint dengan kesalahan 2.8%.
Kata kunci: full bridge boost converter, T2FL, T1FL, DC Microgrid
Â
ABSTRACT
The increasing electricity demand, the decreasing supply of fossil energy, and the difficulty in distributing electricity to remote areas are some of the urgent problems. Solar energy through solar panels can be used to support DC Microgrid systems and is suitable for small-scale power grids. Full Bridge Boost Converter with high-frequency transformers controlled by Fuzzy Logic Type-1 (T1FL) and Fuzzy Logic Type-2 (T2FL) is one of the choices that can be made to maximize the use of solar energy to increase the efficiency and reliability of systems on DC Microgrids by keeping the output voltage constant. From the test results, it can be seen that using T2FL can maintain the output voltage of the Full Bridge Boost Converter which can reach a setpoint voltage of 320V with an error of 0.16% and is stable within 0.59742ms. Meanwhile, T1FL takes 0.7161ms to reach the setpoint with an error of 2.8%.
Keywords: full bridge boost converter, T2FL, T1FL, DC Microgrid
Keywords
Full Text:
PDFReferences
Abdulrazzaq, A. A., & Hussein Ali, A. (2018). Efficiency Performances of Two MPPT Algorithms for PV System With Different Solar Panels Irradiancess. International Journal of Power Electronics and Drive Systems (IJPEDS), 9(4), 1755. https://doi.org/10.11591/ijpeds.v9.i4.pp1755-1764
Ahmad, J., Zaid, M., Sarwar, A., Lin, C.-H., Asim, M., Yadav, R. K., Tariq, M., Satpathi, K., & Alamri, B. (2021). A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications. Energies, 14(9), 2629. https://doi.org/10.3390/en14092629
Alavi, O., & Dolatabadi, S. (2015). Analysis and Simulation of Full-Bridge Boost Converter using Matlab. Balkan Journal of Electrical and Computer Engineering, 3(2). https://doi.org/10.17694/bajece.20406
Arsandi, F. C., Efendi, Moh. Z., & Murdianto, F. D. (2022). Constant Current Constant Voltage for Precise Lithium-Ion Battery Charging. 2022 International Electronics Symposium (IES), 48–53. https://doi.org/10.1109/IES55876.2022.9888703
Carreon-Ortiz, H., Valdez, F., & Castillo, O. (2022). Fuzzy Flower Pollination Algorithm (FFPA): Comparative Study of Type-1 (T1FLS) and Interval Type-2 Fuzzy Logic System (IT2FLS) in Optimization Parameter Adaptation. Computación y Sistemas, 26(2). https://doi.org/10.13053/cys-26-2-4247
El-Shahat, A., & Sumaiya, S. (2019). DC-Microgrid System Design, Control, and Analysis. Electronics, 8(2), 124. https://doi.org/10.3390/electronics8020124
Górecki, K., Detka, K., & Kaczerski, K. (2022). The Influence of the Transformer Core Material on the Characteristics of a Full-Bridge DC-DC Converter. Energies, 15(17), 6160. https://doi.org/10.3390/en15176160
Halkos, G. E., & Gkampoura, E.-C. (2020). Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies, 13(11), 2906.
https://doi.org/10.3390/en13112906
Hussein Selman, N. (2016). Comparison Between Perturb & Observe, Incremental Conductance and Fuzzy Logic MPPT Techniques at Different Weather Conditions. International Journal of Innovative Research in Science, Engineering and Technology, 5(7), 12556–12569. https://doi.org/10.15680/IJIRSET.2016.0507069
Ibrahim, O., Yahaya, N. Z., Saad, N., & Ahmed, K. Y. (2017). Development of Observer State Output Feedback for Phase-Shifted Full Bridge DC–DC Converter Control. IEEE Access, 5, 18143–18154. https://doi.org/10.1109/ACCESS.2017.2745417
Lim, C.-Y., Jeong, Y., & Moon, G.-W. (2019). Phase-Shifted Full-Bridge DC–DC Converter With High Efficiency and High Power Density Using Center-Tapped Clamp Circuit for Battery Charging in Electric Vehicles. IEEE Transactions on Power Electronics, 34(11), 10945–10959. https://doi.org/10.1109/TPEL.2019.2899960
Majdi, A., Alqahtani, M. D., Almakytah, A., & Saleem, M. (2021). Fundamental study related to the development of modular solar panel for improved durability and repairability. IET Renewable Power Generation, 15(7), 1382–1396. https://doi.org/10.1049/rpg2.12079
Masnadi, M. S., Grace, J. R., Bi, X. T., Lim, C. J., & Ellis, N. (2015). From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels. Applied Energy, 140, 196–209. https://doi.org/10.1016/j.apenergy.2014.12.006
Meylani, A., & Handayani, A. S. (2017). Perbandingan Kinerja Sistem Logika Fuzzy Tipe-1 dan Interval Tipe-2 pada Aplikasi Mobile Robot. 3(1).
Paul, S., Dey, T., Saha, P., Dey, S., & Sen, R. (2021). Review on the development scenario of renewable energy in different country. 2021 Innovations in Energy Management and Renewable Resources (52042), 1–2. https://doi.org/10.1109/IEMRE52042.2021.9386748
Prastyawan, A. B., Efendi, M. Z., & Murdianto, F. D. (2021). MPPT Full Bridge Converter Using Fuzzy Type-2 on DC Nano Grid System. 5(2), 8.
Rahrovi, B., Mehrjardi, R. T., & Ehsani, M. (2021). On the Analysis and Design of High-Frequency Transformers for Dual and Triple Active Bridge Converters in More Electric Aircraft. 2021 IEEE Texas Power and Energy Conference (TPEC), (pp. 1–6). https://doi.org/10.1109/TPEC51183.2021.9384990
RÃos, S. J., Pagano, D. J., & Lucas, K. E. (2021). Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter. Energies, 14(2), 404. https://doi.org/10.3390/en14020404
Shukla, P. K., & Tripathi, S. P. (2014). A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. Journal of Uncertainty Analysis and Applications, 2(1), 4. https://doi.org/10.1186/2195-5468-2-4
Tiwary, N., Naik, V. N., Panda, A. K., Narendra, A., & Lenka, R. K. (2021). Fuzzy Logic Based Direct Power Control of Dual Active Bridge Converter. 2021 1st International Conference on Power Electronics and Energy (ICPEE), (pp. 1–5). https://doi.org/10.1109/ICPEE50452.2021.9358536
Unde, M., Deokar, K., Hans, M., & Kawthe, S. (2020). Closed-Loop Design of Fuzzy Logic Controller in Solar Power Generation. 2020 Fourth International Conference on Inventive Systems and Control (ICISC), (pp. 215–219). https://doi.org/10.1109/ICISC47916.2020.9171191
Xu, Y., Yuan, X., Ye, F., Wang, Z., Zhang, Y., Diab, M., & Zhou, W. (2021). Impact of High Switching Speed and High Switching Frequency of Wide-Bandgap Motor Drives on Electric Machines. IEEE Access, 9, 82866–82880. https://doi.org/10.1109/ACCESS.2021.3086680
DOI: https://doi.org/10.26760/elkomika.v11i4.1046
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.