Rekomendasi Jumlah Pupuk Urea untuk Tanaman Padi berdasarkan NDVI Clustering pada Citra Multispektral
Sari
ABSTRAK
Pupuk merupakan hal yang penting bagi tanaman. Nilai NDVI dari citra multispektral lahan pertanian dapat digunakan untuk menentukan kebutuhan pupuk pada tanaman. Pada makalah ini, telah direalisasikan layanan rekomendasi pemupukan tanaman padi berdasarkan NDVI clustering. Citra sawah diambil menggunakan kamera Multispectral Mapir Survey 3W RGN yang dipasang pada DJI Mavic 2 Pro. Penentuan kebutuhan pupuk tanaman padi dilakukan dengan menggunakan metode K-Means clustering pada nilai NDVI. Hasil yang didapat dari proses clustering dimasukan ke dalam rumus rekomendasi pemupukan yang mengacu kepada BWD. Dari hasil pengujian menunjukan platform dapat memberikan rekomendasi pemupukan untuk tanaman padi. Selisih antara hasil rekomendasi jumlah pupuk menggunakan platform dan BWD yaitu 1.29% pada pukul 10.00 pagi, 3.35% pada pukul 12.00 siang, dan 2.40% pada pukul 04.00 sore. Selisih hasil perhitungan tersebut disebabkan karena adanya perbedaan intensitas cahaya matahari.
Kata kunci: multispektral, K-Means Clustering, NDVI, platform, padi, pupuk
Â
ABSTRACT
Fertilizer is a crucial component for plants. NDVI values from multispectral imagery of agricultural land can be used to determine fertilizer requirements. In this paper, a rice plant fertilization recommendation service based on NDVI clustering has been realized. Rice field images were taken using the Multispectral Mapir Survey 3W RGN camera mounted on the DJI Mavic 2 Pro. Determination of fertilizer needs for rice plants is carried out using the K-Means clustering method on the NDVI value. The results obtained from the clustering process are entered into the fertilization recommendation formula which refers to BWD. The test results showed that the platform can provide fertilizer recommendations for rice plants. The difference between the recommended amount of fertilizer using the platform and BWD is 1.29% at 10 a.m, 3.35% at 12 noon, and 2.40% at 4 p.m. The difference in the results of these calculations is due to differences in the intensity of sunlight.
Keywords: multispectral, K-Means Clustering, NDVI, platform, rice, fertilizer
Kata Kunci
Teks Lengkap:
PDFReferensi
Adinugroho, W. C. (2018). Persepsi Mengenai Tanaman Sehat. Bogor: Institut Pertanian Bogor.
Andrianto, H. (2022). Pengembangan Smart Farming IoT Platform Berbasis Service Oriented Architecture, Disertasi Program Doktor, Institut Teknologi Bandung.
Barbedo, J.G.A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3, 1-27.
Berra EF, Gaulton R, Barr S. (2017). Commercial off-the-shelf digital cameras on Unmanned Aerial Vehicles for multitemporal monitoring of vegetation reflectance and NDVI. IEEE Trans Geosci Remote Sens, 55(9), 4878–86.
Deng L, Mao Z, Li X, Hu Z, Duan F, Yan Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J Photogramm Remote Sens, 146, 124–36.
Enda, J. Novizan. (2018). Mengendalikan Hama dan Penyakit Tanaman. Jakarta: Ago Media Pustaka.
Ghazal MA, Mahmoud ALI, Aslantas ALI, Soliman A, Shalaby A, Benediktsson JA, et al. (2019). Vegetation cover estimation using convolutional neural networks. IEEE Access, 7, 132563–76.
Guan S, Fukami K, Matsunaka H, Okami M, Tanaka R, Nakano H, et al. (2019). Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens, 11(112), 1–19.
Horstrand P, Guerra R, Rodriguez A, Diaz M, Lopez S, Lopez JF. (2019). A UAV platform based on a hyperspectral sensor for image capturing and on-board processing. IEEE Access, 7, 66919–38.
Jafarbiglu H, Pourreza A. (2022). A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Comput Electron Agric, 197(106844), 1–23.
Jaihuni M, Khan F, Lee D, Basak JK, Bhujel A, Moon BEUN, et al. (2021). Determining spatiotemporal distribution of macronutrients in a cornfield using remote sensing and a deep learning model. IEEE Access, 9, 30256–66.
Liu, X., Wu, X., Peng, Y., Mo, J., Fang, S., Gong, Y., … Zhang, C. (2023). Application of UAVretrieved canopy spectra for remote evaluation of rice full heading date. Science of Remote Sensing, 7, 1-11.
Luo, S., Jiang, X., Jiao, W., Yang, K., Li, Y., & Fang, S. (2022). Remotely Sensed Prediction of Rice Yield at Different Growth Durations Using UAV Multispectral Imagery. Agriculture (Switzerland), 12(9), 1–17.
Ma, B., Cao, G., Hu, C., & Chen, C. (2023). Monitoring the Rice Panicle Blast Control Period Based on UAV Multispectral Remote Sensing and Machine Learning. Land, 12(2), 1–15.
Maresma Ã, Ariza M, MartÃnez E, Lloveras J, MartÃnez-Casasnovas JA. (2016). Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays l.) from a standard UAV service. Remote Sens, 8(973), 1–15.
Rosas JTF, de Carvalho Pinto F de A, de Queiroz DM, de Melo Villar FM, Magalhães Valente DS, Nogueira Martins R. (2022). Coffee ripeness monitoring using a UAV-mounted lowcost multispectral camera. Precis Agric, 23, 300–18.
Shafi U, Mumtaz R, Iqbal N, Zaidi SMH, Zaidi SAR, Hussain I, et al. (2020). A multi-modal approach for crop health mapping using low altitude remote sensing, Internet of Things (IoT) and machine learning. IEEE Access, 8, 112708–24.
Stavrakoudis D, Katsantonis D, Kadoglidou K, Kalaitzidis A, Gitas IZ. (2019). Estimating rice agronomic traits using drone-collected multispectral imagery. Remote Sens, 11(545), 1–25.
Sukojo, B. M., Wahono. (2019). Pemanfaatan Teknologi Penginderaan Jauh Untuk Pemetaan Kandungan Bahan Organik Tanah. Makara, Teknologi.
Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., dan Archer, D. (2018). Color calibration of digital images for agriculture and other applications, ISPRS Journal of Photogrammetry and Remote Sensing, 146, 221-234.
Zheng, H., Ma, J., Zhou, M., Li, D., Yao, X., Cao, W., … Cheng, T. (2020). Enhancing the Nitrogen Signals of Rice Canopies across Critical Growth Stages through the Integration of Textural and Spectral Information from Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sensing, 12(957), 1-17.
DOI: https://doi.org/10.26760/elkomika.v12i1.1
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.