Penerapan Filter Kalman untuk Estimasi Jarak dan Posisi pada Lokalisasi Outdoor berbasis RSSI dengan Komunikasi LoRa
Sari
ABSTRAK
Wireless Sensor Networ (WSN) merupakan jaringan nirkabel terdiri dari kumpulan node sensor tersebar di lingkungan observasi, saling berkomunikasi sesuai dengan algoritma komunikasi. Salah satu penerapan WSN adalah lokalisasi berbasis RSSI. RSSI merupakan hasil lokalisasi yang bersifat fluktuatif disebabkan oleh fenomena multipath fading, sehingga berpengaruh terhadap hasil lokalisasi. Artikel ini menerapkan Filter Kalman (FK) untuk lokalisasi Outdoor berbasis RSSI dengan komunikasi LoRa untuk lima Node Diam (ND) dan empat Node Anchor (NA). Pengujiannya terdiri dari membandingkan FK dengan tanpa FK, dan FK dengan metode Normalisasi. FK dapat memperbaiki akurasi pada estimasi jarak dan posisi. FK memperbaiki akurasi estimasi jarak sebesar 0,57% untuk ND1; 0,19% untuk ND2; 4,59% untuk ND3; 0,73% untuk ND4 dan 20,11% untuk ND5. Pada estimasi posisi, FK dapat meningkatkan akurasi sebesar 2,45% untuk ND1; 11,19% untuk ND2; 6,03% untuk ND3; 7,64% untuk ND4; dan 5,42% untuk ND5. Selain itu, FKÂ dapat memperbaiki akurasi 15,94% untuk ND1; 3,41% untuk ND 2 dan 15,76% untuk ND 4 terhadap metode Normalisasi.
Kata kunci: Filter Kalman, Localization,LoRa, RSSI, Wireless Sensor Network
Â
ABSTRACT
Wireless Sensor Network (WSN) is a wireless network consisting of sensor nodes spread across an observation environment, communicating with others separately according to a communication algorithm. In addition, one of the WSN applications is RSSI-based localization. RSSI is the development of localization which fluctuates due to the multipath fading phenomenon, thus affecting the localization results. This article executes a Kalman Filter (KF) for RSSI-based Outdoor localization with LoRa communication for five Diam Nodes (ND) and four Anchor Nodes (NA). The experiment involves comparing KF with neither KF nor the Normalization method. KF can improve the accuracy of distance and location estimation. FK increases the distance estimation accuracy by 0,57% for ND1; 0,19% for ND2; 4,59% for ND3; 0,73% for ND4; and 20,11% for ND5. For ND1, ND2, ND3, ND4, and ND5, KF can improve position estimation accuracy by 2,45%, 11,19%, 6,03%, 7,64%, 5,42%, and 2,45%, respectively. In addition, KF can increase accuracy by 15,94% for ND1, 3,41% for ND2, and 15,76% for ND4 in comparison to the Normalization approach.
Keywords: Kalman Filter, Localization, LoRa, RSSI, Wireless Sensor Network
Kata Kunci
Teks Lengkap:
PDFReferensi
Afandi, A., Windarko, N. A., Sumantri, B., & Fakhruddin, H. H. (2022). Estimasi State of Charge (SoC) Ultrakapasitor menggunakan Extended Kalman Filter Berbasis Ladder Equivalent Circuit Model. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(1), 61-75.
Chalifatullah, F. A., Pambudi, W. S., & Masfufiah, I. (2022). Implementasi Moving Average dan Kalman Filter pada Wireless Odometer untuk Informasi Service Kendaraan Bermotor. Jurnal Sistem Komputer dan Informatika (JSON), 4(1), 156-164.
Dieng, O., Pham, C., & Thiare, O. (2019). Outdoor Localization and Distance Estimation Based on Dynamic RSSI Measurements in LoRa Networks: Application to Cattle Rustling Prevention. International Conference on Wireless and Mobile Computing, Networking and Communications, (pp.1-6).
Ibwe, K., & Pande, S. (2022). Filtering Effect on RSSI-Based Indoor Localization Methods. Tanzania Journal of Engineering and Technology, 41(4), 169–182.
Ismail, M. I. M., Dzyauddin, R. A., Kaidi, H. M., Izhar, M. A. M., Samsul, S., & Azmi, N. A. (2022). Comparison of Wireless Sensor Node Localisation Between Trilateration and Multi-Lateration Methods Using RSSI. IEEE Symposium on Future Telecommunication Technologies (SOFTT), (pp. 97-102).
Kamal, M. A., Alam, M. M., Abu, A., Sajak, B., & Mohd, M. (2023). Requirements , Deployments , and Challenges of LoRa Technology : A Survey. Computional Intelligence and Neuroscience, 2023, 1-15.
Kausa, H., & Chattaraj, S. (2022). On some issues in Kalman filter based trilateration algorithms for indoor localization problem. IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), (pp. 431-435).
Ko, Y. N., & Kim, T. G. (2012). Comparison of Kalman filter and particle filter used for localization of an underwater vehicle. International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), (pp. 350-352 ).
Lam, K.-H., Cheung, C.-C., & Lee, W.-C. (2017). LoRa-based localization systems for noisy outdoor environment. International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), (pp. 278-284).
Lavric, A. (2019). LoRa ( Long-Range ) High-Density Sensors for Internet of Things. Journal of Sensors, 2019, 1-9.
Liao, X., Wang, S., Wang, Y., Che, Y., Zhou, J., & Zhang, J. (2022). Multipath Cluster-Assisted Single Station Localization Based on SSA-GA in Outdoor NLOS Environment. Wireless Communications and Mobile Computing, 2022, 1-9.
Ma, A., Puriyanto, R. D., & Hasan, F. T. (2020). Robot Keseimbangan Dengan Kendali Proporsional-Integral-Derivatif ( PID ) dan Kalman Filter. IT Journal Research and Development (ITJRD), 4 (2), 117–127.
Mahmud, M. I., Abdelgawad, A., Yanambaka, V. P., & Yelamarthi, K. (2021). Packet Drop and RSSI Evaluation for LoRa: An Indoor Application Perspective. IEEE World Forum on Internet of Things, (pp. 913-914).
Muladi, M., Hadi, M. S., & Prasanta, M. R. (2022). RSSI and Packet Loss Analysis of LoRa on the Ground Surface Application. International Conference on Electrical and Information Technology, (pp. 140-145).
Musayyanah, Kristalina, P., Triwidayastuti, Y., Susanto, P., & Hadi, M. Z. S. (2023). Distributed localization using normalized quadlateration in LoRa networks: application for tourist position estimation. Indonesian Journal of Electrical Engineering and Computer Science, 29(3), 1446–1455.
Onykiienko, Y., Popovych, P., Yaroshenko, R., Mitsukova, A., Beldyagina, A., & Makarenko, Y. (2022). Using RSSI Data for LoRa Network Path Loss Modeling. International Conference on Electronics and Nanotechnology, ELNANO 2022 - Proceedings , (pp. 576–580).
Prasetyo, Aries Imanuddin, A. I., Yuliana, M., Kristalina, P., & Astawa Puja, I. G. (2017). Implementation of Kalman Filter method for tracking position of Alzheimer’s patients. International Conference on Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), (pp. 135-140).
Puspitorini, O., Mahmudah, H., Wijayanti, A. R. I., & Adi, N. U. R. (2023). Implementasi Telemetri dan Evaluasi Performansi Sistem Komunikasi Lora di Daerah Pesisir Pantai. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(1), 180–194.
Quispetupa, D. A., Fernandez, J. P. T., & Quispe, R. (2022). An experimental evaluation of RSSI-LoRa in an olive tree plantations. IEEE Engineering International Research Conference (EIRCON), (pp. 1-4).
Rathinam, D. D. K., D. Surendran, A. Shilpa, A. Santhiya Grace, & J. Sherin. (2019). Modern Agriculture Using Wireless Sensor Network (WSN). International Conference on Advanced Computing & Communication Systems (ICACCS), (pp. 515-519).
Romadhoni, H. I., Maulana, R., & Widasari, E. R. (2022). Implementasi Analisis Perbandingan Filter Kalman , Moving Average dan Eksponensial pada Alat Pengukur Kadar Kolesterol berbasis Non-Invasif. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6 (9), 4571–4579.
Setiadi, B., Solihin, R., Supriyadi, T., & Tohir, T. (2023). Estimasi Jarak pada Sistem Koordinat Berbasis Metode Haversine menggunakan Tapis Kalman. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika , 11(1), 207–216.
Siswandari, N. A., Puspitorini, O., & Jati, S. (2008). Analisa Pathloss Exponent di Area Terbuka Untuk Aplikasi Wireless Sensor Network. Seminar Nasional Penelitian dan Pengabdian pada Masyarakat, (pp. 401–408).
Tengger, B. A., & Ropiudin. (2019). Pemanfaatan Metode Kalman Filter Diskrit untuk Menduga Suhu Udara. SQUARE: Journal of Mathematics and Mathematics Education, 1 (2), 127–132.
Will, H., Dziengel, N., & Schiller, J.H. (2009). Distance-Based Distributed Multihop Localization in Mobile Wireless Sensor Networks.
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
DOI: https://doi.org/10.26760/elkomika.v11i4.849
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.