Modelling and Analysis using The Thyristors Controlled Series Compensators for Electrical Power Systems

AZRIYENNI AZHARI ZAKRI, TAUFIQ RAHMAN SIREGAR, MOHD WAZIR MUSTAFA, WAHRI SUNANDA

Abstract


ABSTRAK

Untuk memastikan bahwa kebutuhan masyarakat yang berkembang terpenuhi dan tingkat ketergantungan sistem cukup, sangat penting untuk mengelola dan memelihara sistem distribusi daya yang andal. Karena jarak transmisi yang jauh, tidak mungkin untuk mencegah kerusakan instalasi pada sistem tenaga listrik. Hal ini berdampak signifikan pada transmisi tenaga listrik, yang mengakibatkan penurunan tegangan dan hilangnya energi listrik. Penggunaan Flexible Alternating Current Transmission System (FACTS) merupakan salah satu cara untuk mengurangi ketidakstabilan tegangan dan meningkatkan kehandalan jaringan tenaga listrik. Perangkat FACTS adalah Thyristor Controlled Series Compensator (TCSC). Kapasitas daya saluran transmisi ditingkatkan dengan menambahkan TCSC secara seri dengan saluran transmisi. Untuk meningkatkan aliran daya, reaktansi TCSC dapat disesuaikan untuk memodulasi reaktansi saluran transmisi.

Kata kunci: sistem tenaga listrik, FACTS, kompensator seri, tiristor, TCSC

 

ABSTRACT

In order to ensure that the expanding requirements of the community are met and that the system's level of dependability is sufficient, it is crucial to manage and maintain a reliable power distribution system. Due to the extensive transmission distance, it is impossible to prevent installation malfunctions in the electric power system. This has a significant impact on the transmission of electric power, resulting in a voltage decrease and a loss of electrical energy. Using a Flexible Alternating Current Transmission System (FACTS) is one way to reduce voltage instability and improve the dependability of the electrical power grid. A FACTS device is the Thyristor Controlled Series Compensator (TCSC). The power capacity of the transmission line is increased by adding the TCSC in series with the transmission line. In order to increase power flow, the TCSC's reactance can be adjusted to modulate the transmission line's reactance.

Keywords: electrical power system, FACTS, series compensators, thyristors, TCSC


Keywords


electrical power system; FACTS; series compensators; thyristors; TCSC

Full Text:

PDF

References


Agrawal, R. K., Sharma, M. P., Kumawat, N. K., & Vyas, B. (2019). High voltage mitigation of EHV system by shunt reactor vs shunt capacitor. In 2019 8th International Conference on Power Systems (ICPS), (pp. 1-6). IEEE. doi: 10.1109/icps48983.2019.9067594.

Brinkmann, M. (2020). Legitimate power without authority: The transmission model. Law and Philosophy, 39, 119-146. doi: 10.1007/s10982-019-09369-z.

Deepak, M., & Abraham, R. J. (2015). Load following in a deregulated power system with thyristor controlled series compensator. International Journal of Electrical Power & Energy Systems, 65, 136-145. doi: 10.1016/j.ijepes.2014.09.038.

Eladany, M. M., Eldesouky, A. A., & Sallam, A. A. (2018). Power system transient stability: An algorithm for assessment and enhancement based on catastrophe theory and FACTS devices. IEEE Access, 6, 26424-26437. : 10.1109/ACCESS.2018.2834906.

Ferreira, A. P., Osipov, D., Taranto, G. N., Assis, T. M., & Chow, J. H. (2023). Extended realtime voltage instability identification method based on synchronized phasor measurements. International Journal of Electrical Power & Energy Systems, 147, 108804. doi: 10.1016/j.ijepes.2022.108804.

Glover, J. D., Sarma, M. S., & Overbye, T. J. (2012). Power System. Analysis and Design, Stamford: Cengage Learning.

Gonen, T. (2011). Electrical power transmission system engineering: analysis and design. CRC press.

Ibrahim, D. K., Abo-Hamad, G. M., Zahab, E. E. D. M. A., & Zobaa, A. F. (2020). Comprehensive analysis of the impact of the TCSC on distance relays in interconnected transmission networks. IEEE Access, 8, 228315-228325. doi: 10.1109/ACCESS.2020.3046532.

Iešmantas, T., & Alzbutas, R. (2019). Bayesian spatial reliability model for power transmission network lines. Electric Power Systems Research, 173, 214-219. doi: 10.1016/j.epsr.2019.04.014.

Jiang, L., Chen, Q., Wang, L., Zhao, P., Zeng, Y., & Huang, W. (2019). Novel protection method for VSCâ€HVDC transmission lines. The Journal of Engineering, 2019(16), 2142-2146. : 10.1049/joe.2018.8687.

Krzywonos, M. L. F. B. L., & Krzysiak, Z. (2017). Transmission system power flow model. ENERGY INTENSITY AND GHG PRODUCTION OF CHOSEN PROPULSIONS USED IN ROAD TRANSPORT, 19, 27. doi: 10.26552/com.c.2017.2.27-31.

Kulkarni, P. P., & Ghawghawe, N. D. (2015). Optimal placement and parameter setting of TCSC in power transmission system to increase the power transfer capability. In 2015 International Conference on Energy Systems and Applications, (pp. 735-739). IEEE. doi: 10.1109/ICESA.2015.7503446.

Novriandi, D., Zakri, A. A., & Ervianto, E. (2019). Sag and Tension of 275 kV Transmission Line using Catenary. International Journal of Electrical, Energy and Power System Engineering, 2(3), 15-20. doi: 10.31258/ijeepse.2.3.15-20.

Nurohmah, H., & Ali, M. (2013). Performansi Thyristor Controlled Series Capacitor (TCSC) Pada Saluran Transmisi Menggunakan Bahasa Pemrograman PSAT. Jurnal Intake: Jurnal Penelitian Ilmu Teknik dan Terapan, 4(2), 62-74.

Panda, S. (2009). Differential evolutionary algorithm for TCSC-based controller design. Simulation Modelling Practice and Theory, 17(10), 1618-1634.. doi: 10.1016/j.simpat.2009.07.002.

Peng, C., Ye, Z. H., Xia, Y. H., & Yang, C. (2021). Analysis on space transmission model of the Microwave Wireless Power Transfer system. Frequenz, 75(11-12), 449-458. , doi: 10.1515/freq-2021-0035.

Putra, A. M. N. (2021). Efektifitas Pemasangan Kapasitor di Gardu Induk Terhadap Kualitas Daya di Jaringan Transmisi. Jurnal Teknik Elektro, 10(1), 30-35.

Raj, S., & Bhattacharyya, B. (2018). Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm. Swarm and Evolutionary Computation, 40, 131-143. , doi: 10.1016/j.swevo.2017.12.008.

Raoofat, M., Mahmoodian, A., & Abunasri, A. (2015). Fault location in transmission lines using neural network and wavelet transform. In 2015 International Congress on Electric Industry Automation (ICEIA 2015), (pp. 1-6). IEEE. doi: 10.1109/ICEIA.2015.7165837.

Rui, L., Ziyi, W., Qi, T., & Wei, W. (2016). Research on capacity value estimation for hybrid power generation system based on WT/PV/ESS considering operation strategy. In 2016 China International Conference on Electricity Distribution (CICED), (pp. 1-5). IEEE. doi: 10.1109/CICED.2016.7576402.

Saadat, H. (2009). Power system analysis,(2nd). McGraw-Hill Higher Education.

Shafik, M. B., Chen, H., Rashed, G. I., & El-Sehiemy, R. A. (2019). Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access, 7, 36934-36947. doi: 10.1109/ACCESS.2019.2905266.

Shahbudin, I. S., Musirin, I., Suliman, S. I., Harun, A. F., Mustaffa, S. A. S., Suyono, H., & Ghani, N. A. M. (2019). FACTS device installation in transmission system using whale optimization algorithm. Bulletin of electrical engineering and informatics, 8(1), 30-38. doi: 10.11591/eei.v8i1.1442.

Taha, I. B., ELGebaly, A. E., Ahmed, E. S., & Abd el-Ghany, H. A. (2021). Generalized voltage estimation of TCSC-compensated transmission lines for adaptive distance protection. International Journal of Electrical Power & Energy Systems, 130, 107018. , doi: 10.1016/j.ijepes.2021.107018.

Tang, L., Dong, X., Shi, S., & Wang, B. (2018). Analysis of the characteristics of faultâ€induced travelling waves in MMCâ€HVDC grid. The Journal of Engineering, 2018(15), 1349-1353. doi: 10.1049/joe.2018.0256.

Tleis, N. (2007). Power systems modelling and fault analysis: theory and practice. Elsevier. doi: 10.1017/CBO9781107415324.004.

Zainuddin, M., Handayani, T. P., Sunanda, W., & Surusa, F. E. P. (2018). Transient stability assessment of large scale grid-connected photovoltaic on transmission system. In 2018 2nd International Conference on Green Energy and Applications (ICGEA), (pp. 113-118). IEEE. doi:10.1109/icgea.2018.8356270.

Zhang, J., Liu, K., Liu, Y., He, S., & Tian, W. (2019). Active power decoupling and controlling for singleâ€phase FACTS device. The Journal of Engineering, 2019(16), 1333-1337. doi: 10.1049/joe.2018.8823.

Zhang, S., Zeng, Y., Song, L., Lou, S., & Wang, W. (2021). A Simplified Model for Calculating Efficiency Loss of Aperture Illumination With Phase Errors for Microwave Power Transmission. IEEE Antennas and Wireless Propagation Letters, 20(4), 468-472. doi: 10.1109/LAWP.2021.3054382.

Zhu, M. (2019). Mechanism and problem analysis of high-voltage shunt reactor. In AIP Conference Proceedings, 2066(1), 020055. AIP Publishing LLC. doi: 10.1063/1.5089097.




DOI: https://doi.org/10.26760/elkomika.v11i3.691

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License