Clustering Suara Corona Discharge berdasarkan Tegangan menggunakan Metode Fuzzy C-Mean

MIFTAHUL FIKRI, CHRISTIONO CHRISTIONO, IWA GARNIWA MULYANA K., KARTIKA TRESYA MAURIRAYA, NURMIATI PASRA, SAMSURIZAL SAMSURIZAL, MUHAMMAD LUTHFIANSYAH ROMADHONI, ANDI AMAR THAHARA

Sari


ABSTRAK

Corona discharge (CD) atau peluahan permukaan merupakan faktor kegagalan isolasi pada sistem kelistrikan yang dipengaruhi oleh kondisi lingkungan tidak menentu dan perlu pemantauan secara terkini. CD menghasilkan gelombang suara yang digunakan sebagai parameter untuk langkah awal mencapai tujuan tersebut, penelitian ini mengkluster suara CD pada terminasi kubikel 20 kV. Penelitian menggunakan elektroda jarum-jarum berjarak 3 cm. Tercatat nilai sebelum breakdown voltage terjadi pada tegangan 33,4 kV, dan pengambilan data terbagi 3 klaster: 20-24 kV, 25-29 kV, 30-33 kV. Proses klasterisasi dengan metode LPC untuk menghasilkan ekstraksi suara. Kemudian menggunakan metode fuzzy c-mean untuk memperoleh akurasi dengan membandingkan pola suara training dan testing. Pada Kelembapan berkisar 70%-95% dengan suhu antara 27,5°C - 35.3°C diperoleh hasil akurasi 96,00% untuk data training dan 80,00% untuk data testing.

Kata kunci: Corona discharge, fuzzy c-mean, linear predictive coding, kegagalan isolasi

 

ABSTRACT

Corona discharge (CD) is a factor in insulation failure in electrical systems, which is affected by uncertain environmental conditions and requires up-to-date monitoring. CD which produces sound waves, is used as a parameter for the initial step to achieve this goal. This research will cluster CD sounds at 20 kV cubicle terminations. The study used electrode needles spaced 3 cm apart. The value recorded before the breakdown voltage occurred was 33.4 kV, and data collection was divided into 3 clusters: 20–24 kV, 25–29 kV, and 30-33 kV. The clustering process with the LPC method produces sound extraction. Then use the fuzzy C-mean method to obtain accuracy by comparing trained and tested sound patterns. At a humidity range of 70%–95% and temperatures between 27.5°C–35.3°C, the results obtained an accuracy of 96.00% for training data and 80.00% for testing data.

Keywords: Corona discharge, fuzzy c-mean, linier predictive coding, insulation failure


Kata Kunci


Corona discharge; fuzzy c-mean; linear predictive coding; kegagalan isolasi

Teks Lengkap:

PDF

Referensi


Abriyono, A., & Harjoko, A. (2013). Pengenalan Ucapan Suku Kata Bahasa Lisan Menggunakan Ciri LPC, MFCC, dan JST. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 7(1), 23–34. https://doi.org/10.22146/ijccs.2149

Al-geelani, N. A., Piah, M. A. M., & Abdul-Malek, Z. (2017). Identification of acoustic signals of corona discharges under different contamination levels using wavelet transform. Electrical Engineering, 100(2), 1059–1067. https://doi.org/10.1007/s00202-017-0568-5

Arismunandar, A. (1978). Teknik Tegangan Tinggi. Pradnya Paramita.

Bezdek, J. C. (1984). FCM: The Fuzzy C-Means Clustering Algorithm. In Computers & Geosciences 10(3).

Dewi, I. A., Zulkarnain, A., & Lestari, A. A. (2018). Identifikasi Suara Tangisan Bayi menggunakan Metode LPC dan Euclidean Distance. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(1), 153–164. https://doi.org/http://dx.doi.org/10.26760/elkomika.v6i1.153

FIKRI, M., CHRISTIONO, C., & MULYANA K., I. G. (2022). Clustering Fenomena Corona discharge berdasarkan Suara menggunakan Metode LPC dan Euclidean Distance. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(3), 689. https://doi.org/10.26760/elkomika.v10i3.689

Gröll, L., & Jäkel, J. (2005). A new convergence proof of fuzzy c-means. In IEEE Transactions on Fuzzy Systems 13(5), pp. 717–720). https://doi.org/10.1109/TFUZZ.2005.856560

Hathaway, R. J., & Bezdek, J. C. (1988). Recent convergence results for the fuzzy c-means clustering algorithms. Journal of Classification, 5(2), 237–247. https://doi.org/10.1007/BF01897166

Hedtke, S., Pfeiffer, M., & Franck, C. M. (2019). Corona discharge pulse pattern and audible noise on hybrid AC/DC transmission lines under electric field bias, ripple and ion coupling. Journal of Electrostatics, 102(August). https://doi.org/10.1016/j.elstat.2019.103373

Illias, H., Teo Soon Yuan, Bakar, A. H. A., Mokhlis, H., Chen, G., & Lewin, P. L. (2012). Partial discharge patterns in high voltage insulation. PECon 2012 - 2012 IEEE International Conference on Power and Energy, December, 750–755. https://doi.org/10.1109/PECon.2012.6450316

Karimi, M., Majidi, M., Mirsaeedi, H., Arefi, M. M., & Oskuoee, M. (2019). A novel application of deep belief networks in learning Partial discharge patterns for classifying corona, surface, and internal discharges. IEEE Transactions on Industrial Electronics, 67(4), 3277–3287. https://doi.org/10.1109/TIE.2019.2908580

Li, X., Wang, J., Lu, T., & Cui, X. (2018). Statistical analysis of audible noise generated by AC corona discharge from single corona sources. High Voltage, 3(3), 207–216. https://doi.org/10.1049/hve.2017.0159

Masarrang, R., Patras, L. S., & Tumaliang, H. (2019). Efek Korona pada Saluran Transmisi Gardu Induk Tello Sulawesi Selatan. Jurnal Teknik Elektro Dan Komputer, 8(2), 67–74. https://doi.org/10.35793/jtek.8.2.2019.23980

Menesy, A. S., Jiang, X., Ali, M. A., Sultan, H. M., Alfakih, N. M., & Kamel, S. (2020). Partial discharge and Breakdown Characteristics in Small Air Gap Length Under DC Voltage in Needle-Plane Electrode Configuration. 2020 IEEE IAS Industrial and Commercial Power System Asia Technical Conference, 869–874.

Moore, A. J., Schubert, M., & Rymer, N. (2018). Technologies and Operations for High Voltage Corona Detection with UAVs. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESGM.2018.8585759

Pal, N. R., & Bezdek, J. C. (1995). On Cluster Validity for the Fuzzy c-Means Model. IEEE Transactions on Fuzzy Systems, 3(3), 370–379. https://doi.org/10.1109/91.413225

PASRA, N., FIKRI, M., MAURIRAYA, K. T., RIJANTO, T., & BUDITJAHJANTO, I. G. P. A. (2023). Deteksi Suara Corona discharge berdasarkan Noise menggunakan Metode LPC dan Euclidean Distance. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(1), 72. https://doi.org/10.26760/elkomika.v11i1.72

Portugues, I. E., Moore, P. J., Glover, I. A., Johnstone, C., McKosky, R. H., Goff, M. B., & van der Zel, L. (2009). RF-based Partial discharge early warning system for air-insulated substations. IEEE Transactions on Power Delivery, 24(1), 20–29. https://doi.org/10.1109/TPWRD.2008.2005464

Prihatnolo, S. T., Syakur, A., & Facta, M. (2011). Pengukuran Tegangan Tembus Dielektrik Udara pada Berbagai Sela dan Bentuk Elektroda dengan Variasi Temperatur Sekitar. Jurnal Teknik Elektro Undip, 1–8.

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2), 257–286. https://doi.org/10.1109/5.18626

Rabiner, L., & Juang, B.-H. (1993). Fundamentals of speech recognition. Prentice Hall.

Rusdi, S. (2019). Analisa Terbentuknya Korona Pada Saluran Kubicle Tegangan 20Kv Serta Pengaruhnya Terhadap Rugi-Rugi Daya. Lensa, 2(48), 14–21.

Syakur, A., & Facta, M. (2005). Perbandingan Tegangan Tembus Media Isolasi Udara Dan Media Isolasi Minyak Trafo Menggunakan Elektroda Bidang-Bidang. Transmisi, 10(2), 26–29. https://doi.org/10.12777/transmisi.7.2.26-29

Wahyudi, M., Tumiran, Yulistya Negara, I. M., Akhmad Setiawan, N., & Sugiyantoro, B. (2019). Audiosonic Acoustic Detection of Air Corona discharge based on Fast Fourier Transform. Proceedings of the 2nd International Conference on High Voltage Engineering and Power Systems: Towards Sustainable and Reliable Power Delivery, ICHVEPS 2019 , 1–6. https://doi.org/10.1109/ICHVEPS47643.2019.9011029

Wang, X., Taylor, N., & Edin, H. (2016). Effect of Humidity on Partial discharge in a Metal-Dielectric Air Gap on Machine Insulation at Trapezoidal Testing Voltages. Journal of Electrostatics, 83, 88–96. https://doi.org/10.1016/j.elstat.2016.08.003

Widyastuti, C., & Bagus, I. N. (2019a). Energi dan Kelistrikan : Jurnal Ilmiah Dampak Korona pada SUTET 500 kV Terhadap Radio Interference Energi dan Kelistrikan : Jurnal Ilmiah. 11(2), 87–97.

Widyastuti, C., & Bagus, I. N. (2019b). Energi dan Kelistrikan : Jurnal Ilmiah Dampak Korona pada SUTET 500 kV Terhadap Radio Interference Energi dan Kelistrikan : Jurnal Ilmiah.11(2), 87–97.

Zhu, M. X., Wang, Y. B., Liu, Q., Zhang, J. N., Deng, J. B., Zhang, G. J., Shao, X. J., & He, W. L. (2017). Localization of Multiple Partial discharge Sources in Air-Insulated Substation Using Probability-Based Algorithm. IEEE Transactions on Dielectrics and Electrical Insulation, 24(1), 157–166. https://doi.org/10.1109/TDEI.2016.005964




DOI: https://doi.org/10.26760/elkomika.v11i3.609

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License