Pupilometri Dinamis untuk Mengukur Respons Pupil sebagai Pendeteksi Dini Demensia pada Lansia
Abstract
ABSTRAK
Pupilometri merupakan metode pengukuran respons pupil terhadap stimulus. Kemampuan pupil mata dalam merespons cahaya diamati melalui pupillary light response (PLR). Penelitian mendapati PLR pasien demensia berbeda dengan pasien normal. Penelitian ini bertujuan merancang algoritma computer vision yang dapat mendeteksi pupil secara akurat, menampilkan respons pupil terhadap cahaya dalam bentuk grafik dan PLR pada sebuah aplikasi desktop, yang mengendalikan goggles berisi rangkaian kamera, pencahayaan, dan sensor jarak VL53L0X. Rekaman diproses dengan Local Binary Pattern (LBP) dan deteksi kontur untuk mendeteksi pupil. Data pengukuran diproses dan disimpan pada basis data lokal dan aplikasi web, sehingga tenaga medis dapat menentukan ada atau tidaknya gejala demensia pada pasien lansia. Tingkat ketelitian algoritma pengukuran pupil sebesar 73,33% yang didapatkan dari 30 kali pengujian.
Kata kunci: computer vision, demensia, deteksi dini, pupillary light response, pupilometri
Â
ABSTRACT
Pupillometry is a method of measuring the pupil’s response towards stimulus. Pupil response to light is observed through pupillary light response (PLR). Research found that PLR values of patients suffering from dementia differ from that of normal patients. This study implements a computer vision algorithm that accurately detects the pupil, calculates, and shows its response towards light in graphs and PLR values on a desktop application which controls goggles that contain a camera, lighting setup, and the VL53L0X distance sensor. Video is processed using Local Binary Pattern (LBP) and contour detection to detect the pupil. Results are processed and saved in the local and web database, so experts can determine the presence of dementia symptoms in the elderly patient. The accuracy of the pupil detection algorithm is 73,33%, as obtained from 30 tests.
Keywords: computer vision, dementia, early detection, pupillary light response, pupillometry
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bradski, G., & Kaehler, A. (2016). Learning OpenCV 3. California: O’Reilly Media, Inc.
Capó-Aponte, J.E., et al. (2013). Pupillary Light Reflex as an Objective Biomarker for Early Identification of Blast-Induced mTBI, Journal of Spine, 4, 1-5.
Frost, S., et al. (2017). Evaluation of Cholinergic Deficiency in Preclinical Alzheimer’s Disease Using Pupillometry. Journal of Ophthalmology, 1-8.
Hall, C. A., & Chilcott, R. P., (2018). Eyeing up the future of the pupillary light reflex in neurodiagnostics, Diagnostics, 8(1), 19.
Hansun, S. (2013). A New Approach of Moving Average Method in Time Series Analysis. The 2013 Conference on New Media Studies (CoNMedia), (pp. 1-4).
Kerr, R. G., et al. (2016). Underestimation of Pupil Size by Critical Care and Neurosurgical Nurses. American Journal of Critical Care, 25(3), 9-213.
Kushsairy K., et al. (2014). A Comparative Study between LBP and Haar-like features for Face Detection Using OpenCV. 4th International Conference on Engineering Technology and Technopreneurship (ICE2T), (pp. 335-339).
Laković N., et al. (2019). Application of Low-Cost VL53L0X ToF Sensor for Robot Environment Detection. 18th International Symposium INFOTEH-JAHORINA (INFOTEH), (pp. 1-4).
Phase, T. (2020). Building Custom HAAR-Cascade Classifier for face Detection. International Journal of Engineering and Technical Research, 8(12), 1-6.
Sandilayan, M. B., & Dening T. (2015). Signs and Symptoms of Dementia. Nursing Standard, 29(41), 42-51.
Setjo, C. H., & Faridah, B.A. Thermal Image Human Detection Using Haar-Cascade Classifier. 7th International Annual Engineering Seminar (InAES), (pp. 1-6).
Siva kumar, A. V, et al. (2020). Quantitative determination of pupil by dynamic pupillometry using infrared videography – Role in evaluation of autonomic activity. Clinical Epidemiology and Global Health, 8, 728-732.
Subdirektorat Statistik Pendidikan dan Kesejahteraan Sosial. (2020). Statistik Penduduk Lanjut Usia 2020. Jakarta: Badan Pusat Statistik.
Verbeek, M. (2017). Using linear regression to establish empirical relationships. IZA World of Labor, 2, 336.
DOI: https://doi.org/10.26760/elkomika.v11i3.553
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.