Analisis Energi dan Eksergi pada Siklus Rankine Organik Terintergerasi untuk Pemulihan Panas Limbah dari Sistem AC
Abstract
ABSTRAK
Penelitian ini bertujuan untuk menganalisa energi dan eksergi sistem gabungan AC dan ORC dengan parameter jenis refrigeran yang berbeda. Penelitian ini dilatarbelakangi oleh permasalahan dimana limbah panas dari sistem AC menjadi salah satu penyebab rusaknya lingkungan. Penelitian dilakukan dengan cara simulasi menggunakan software EES (Engineering Equation Program). Analisis data yang digunakan adalah analisis data kuantitatif dengan perbedaan nilai performa subsistem AC dan ORC terhadap jenis refrigeran yang berbeda. Berdasarkan analisis termodinamika (energi dan eksergetik), R600a-R227ea dipilih sebagai pasangan fluida untuk siklus rankine organik dan AC terintegerasi. Koefisien kinerja kombinasi (COP Kombinasi) sistem terintegerasi dapat ditingkatkan dari 3,65 hingga 5,37. Sistem siklus rankine organik dapat menghasilkan 4,14 kW energi listrik bersih dengan efisiensi termal 5,129%. Sistem siklus gabungan AC-ORC terintegerasi beroperasi dengan efisiensi exergi 25,37%.
Kata kunci: EES, Energy, Exergy, AC, ORC
Â
ABSTRACT
This study aims to analyze the energy and exergy of ac and ORC combined systems with different refrigerant type parameters. This research is motivated by a problem where waste heat from the air conditioning system is one of the causes of environmental damage. The research was conducted by simulation using EES (Engineering Equation Program) software. The data analysis used is quantitative data analysis with differences in the performance values of the AC and ORC subsystems against different types of refrigerants. Based on thermodynamic analysis (energy and exergetic), R600a-R227ea was selected as the fluid pair for the organic rankine cycle and integrated AC. The combined performance coefficient (COP Combination) of integrated systems can be increased from 3.65 to 5.37. The organic rankine cycle system can produce 4.14 kW of clean electrical energy with a thermal efficiency of 5.129%. The integrated AC-ORC combined cycle system operates with an exergical efficiency of 25.37%.
Keywords: EES, Energy, Exergy, AC, ORC
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ali, H. M. (2022). Heat transfer augmentation of porous media (metallic foam) and phase change material based heat sink with variable heat generations: An experimental evaluation. Sustainable Energy Technologies and Assessments, 52(PC), 102218. https://doi.org/10.1016/j.seta.2022.102218
Aphornratana, S., & Sriveerakul, T. (2010). Analysis of a combined Rankine-vapourcompression refrigeration cycle. Energy Conversion and Management, 51(12), 2557–2564. https://doi.org/10.1016/j.enconman.2010.04.016
Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040
Bonk, C. D., Laux, C., Rödder, M., & Neef, M. (2017). Design of a 1 KW Organic Rankine Cycle for Teaching and Research Issues. Energy Procedia, 129, 931–938. https://doi.org/10.1016/j.egypro.2017.09.117
Borikar, S. A., Gupta, M. M., Alazawi, M. A., Malwe, P. D., Moustafa, E. B., Panchal, H., & Elsheikh, A. (2021). A case study on experimental and statistical analysis of energy consumption of domestic refrigerator. Case Studies in Thermal Engineering, 28(November), 101636. https://doi.org/10.1016/j.csite.2021.101636
Encabo, C. I., Agromayor, R., & Nord, L. O. (2017). Thermodynamic Optimization Of An Organic Rankine Cycle For Power Generation From A Low Temperature Geothermal Heat Source. Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017, 138, 251–262. https://doi.org/10.3384/ecp17138251
Franchetti, B., Pesiridis, A., Pesmazoglou, I., Sciubba, E., & Tocci, L. (2016). Thermodynamic and technical criteria for the optimal selection of the working fluid in a miniORC. ECOS 2016 - Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, 1–15.
Kaushik, S. C., Panwar, N. L., & Reddy, V. S. (2012). Thermodynamic evaluation of heat recovery through a Canopus heat exchanger for vapor compression refrigeration (VCR) system. Journal of Thermal Analysis and Calorimetry, 110(3), 1493–1499. https://doi.org/10.1007/s10973-011-2111-7
Li, C., Zhou, J., Cao, Y., Zhong, J., Liu, Y., Kang, C., & Tan, Y. (2014). Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Applied Energy, 117, 149–156. https://doi.org/10.1016/j.apenergy.2013.11.057
Malwe, P. D., Shaikh, J., & Gawali, B. S. (2022). Exergy assessment of a multistage multievaporator vapor compression refrigeration system using eighteen refrigerants. Energy Reports, 8, 153–162. https://doi.org/10.1016/j.egyr.2021.11.072
Rajabloo, T. (2017). Thermodynamic study of ORC at different working and peripheral conditions. Energy Procedia, 129, 90–96. https://doi.org/10.1016/j.egypro.2017.09.165
Sarkar, J. (2018). Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery. Energy, 143, 141–150. https://doi.org/10.1016/j.energy.2017.10.057
Tahir, M. B. M., & Yamada, N. (2009). Characteristics of Small ORC System for Low Temperature Waste Heat Recovery. Journal of Environment and Engineering, 4(2), 375–385. https://doi.org/10.1299/jee.4.375
Wahile, G. S., Malwe, P. D., & Aswalekar, U. (2022). Latent heat storage system by using phase change materials and their application. Materials Today: Proceedings, 52, 513–517. https://doi.org/10.1016/j.matpr.2021.09.268
Wahile, G. S., Malwe, P. D., & Kolhe, A. V. (2020). Waste heat recovery from exhaust gas of an engine by using a phase change material. Materials Today: Proceedings, 28, 2101–2107. https://doi.org/10.1016/j.matpr.2020.03.247
Yansuri, D. S. (2018). Perencanaan Sistem Waste Heat Recovery Power Generation (WHRPG) Pabrik Semen. Jurnal Teknik Elektro, 8(2), 1–8.
DOI: https://doi.org/10.26760/elkomika.v11i3.567
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.