Active Control based on Adaptive Filters for Elastic Supported Cylinders
Abstract
ABSTRAK
Dalam makalah ini, kami menyajikan strategi kontrol feedforward baru disajikan untuk kontrol getaran induksi aliran dari silinder tabung yang ditopang balok kantilever elastis yang dipasang melintang. Strategi kontrol bertujuan untuk membatasi gerakan dari silinder tabung yang ditopang balok kantilever elastik, untuk mencegah getaran optimal yang akan menghasilkan nonlinear sistem. Sistem control feedforward menggunakan gabungan antara multiresolution wavelet dengan Filtered-x least mean square (FxLMS) control algorithm. Untuk memverifikasi kelayakan algoritme kontrol yang diusulkan, upaya numerik dengan menggunakan persamaan Van der Pol dan hasil penerapan dalam eksperimental dilakukan untuk memperlihatkan respon getaran yang terjadi terhadap waktu. Diperoleh bahwa keefektifan algoritme wavelet-FxLMS sebagai strategi kontrol getaran aktif nonlinear telah berhasil didemonstrasikan baik secara eksperimental maupun teoritis di bawah osilator bangun Van der Pol.
Kata kunci: kontrol adaptif, teori kontrol, sistem kontrol, kontrol getaran, sistem kontrol non-linier.
Â
ABSTRACT
In this paper, we present a novel feedforward control strategy presented for the control of flow-induced vibration of a tube cylinder supported by a transversely mounted elastic cantilever beam. The control strategy aims to limit the movement of the tube cylinder which is supported by elastic cantilever beams, to prevent optimal vibration which will result in a nonlinear system. The feedforward control system uses a combination of multiresolution wavelets and the Filtered-x least mean square (FxLMS) control algorithm. To verify the control feasibility of the proposed algorithm, a numerical effort using Van der Pol equation and the results of implementing it in the experiment was carried out to reveal the response vibrations that occur over time. It was found that the effectiveness of the wavelet-FxLMS algorithm as a nonlinear active vibration control strategy has been successfully demonstrated both experimentally and theoretically under a Van der Pol wake oscillator.
Keywords: adaptive control, control theory, control systems, vibration control, nonlinear control systems.
Keywords
Full Text:
PDFReferences
Adewumi, G, & Inambao, F. (2017). Active Wind Turbine Aerodynamic Noise Control Using FXLMS Algorithm. International Journal of Applied Engineering Research ISSN 0973-4562, 12(24), 14382-14390.
Agung, W.B., & Anggraini, R., & Subekti, S. (2020). Development of Early Detection of Smoke and Gas Leaks in LPG Cylinders, Household Scale Fire Prevention (in Indonesia). Exacta Factor, 13(2), pp. 113-124.
Akansu, A.N., & Haddad, R.A. (2001). Multiresolution Signal Decomposition: Transformations, Subbands and Wavelets. New Work NM, Academic Press.
Akraminia, M., Mahjoob, M., & Tatari, M. (2017). Nonlinear Active Noise Control Using Adaptive Wavelet Filter. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 37(1), 287-304.
An, Fengyan, & Li, Hao. (2022). Experimental Research on Reducing Flow-Induced Cavity Resonance with a Narrowband Active Noise Control System. Citation: An, F.; Li, H.; Zhang, X.; Sun, C.; Liu, B. Experimental Research on Reducing Flow-Induced Cavity Resonance with a Narrowband Active Noise Control System. Appl. Sci., 12, 7044. https://www.mdpi.com/2076-3417/12/14/7044/pdf?version=1657861075
Babu, P., & Krishnan, A. (2010). A New Variable Threshold and Dynamic Step Size Based Active Noise Control System for Improving Performance. International Journal of Computer Science and Information Security (IJCSIS), 7(2), 160-165.
Bean, J.J., (2018). Design and Analysis of an Active Noise Canceling Headrest. https://vtechworks.lib.vt.edu/bitstream/handle/10919/94626/Bean_JJ_D_2018.pdf?sequence=1.
Blanchard, A., & Bergan, L.A. (2019). Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. https://dspace.mit.edu/bitstream/handle/1721.1/131785/11071_2019_4775_ReferencePDF.pdf?sequence=1&isAllowed=y,.
Botti, N. (2021). Active Structural-Acoustic Control on interior noise of a plate-cavity system usingFxNLMS algorithm. https://www.politesi.polimi.it/bitstream/10589/186212/4/2022_04_Botti_Botti.pdf.
Carra S., Amabili, M., Ohayon, R., and Hutin, PM. (2008). Active vibration control of thin rectangular plates in air or in contact with water in the presence of tonal primary disturbances. Aerospace Science and Technology, 12, 54–61.
Cao, S., He, Q., Zhang, R., & Cng, D. (2020). Active Control Strategy of High-Speed Elevator Horizontal Vibration Based on LMI Optimization. https://ceai.srait.ro/index.php?journal=ceai&page=article&op=download&path%5B%5D=6500&path%5B%5D=1564, 72-83.
Cong Le, D., Zhang, J., Li D., & Zhang, S. (2018). A Generalized Exponential Functional Link Artificial Neural Networks Filter with Channel-Reduced Diagonal Structure for Nonlinear Active Noise Control.
https://www.sciencedirect.com/science/article/pii/S0003682X1731157X.
El-Shahed, R., Al berry, M., Ebied, H.M., & Shedeed, H.A. (2022). High capacity video hiding based on multi-resolution stationary wavelet transform and hybrid-matrix decomposition techniques. Bulletin of Electrical Engineering and Informatics, 11(4), pp. 1959~1969.
Fallah, M., & Imani, B.M. (2019). Adaptive inverse control of chatter vibrations in internal turning. Mechanical Systems and Signal Processing 129, 91-111.
Ishihara, T., & Li, T. (2019). Numerical study on suppression of vortex-induced vibration of circular. http://windeng.t.u-tokyo.ac.jp/ishihara/paper/2020-1.pdf,.
Kant, R., & Vinod, N. (2022). A modified FxLMS uid flow control model for convectively. https://www.ias.ac.in/article/fulltext/sadh/047/0104,.
Kobayashi, Y., Kamide, E., & Hoshino, Y. (2006). Clutch Cancellation and Vibration Cancellation Control of Elastic Supported Cylinders and Oscillator Build. JSME Transactions (in Japanese).
Kowalczyk, K., & Svaricek, F. (2005). Experimental Robustness FXLMS, and Distribution Algorithm for Active Control in Automotive Applications. 16th WOLD IFAC Congress: Prague.
Krauze , P., & Kasprzyk, J. (2016). Mixture of Skyhook and FxLMS Control of a Half Car Model with Magnetorheological Damping. Hindawi Publishing Corporation Advances in Acoustics and Vibration, Article ID 7428616, 13 pages.
Lee, C.W. (2000). Uji Kinerja Sistem Active Engine Mount Pada Mobil Penumpang . Kongres Internasional Ketujuh tentang Suara dan Getaran. Jerman.
Liang, X., et al. (2022). A New Proportionate Filtered-x RLS Algorithm for Active Noise Control System. https://www.mdpi.com/1424-8220/22/12/4566/pdf?version=1655441503, Sensors, 22, 4566.
Lu, L., & Yin, KL. et al. (2021). A survey on active noise control techniques–Part I: Linear systems. The work is supported by the National Science Foundation of P.R. China under Grant, Sichuan University Post doctoral Interdisciplinary Fund. https://arxiv.org/pdf/2110.00531.Malate, S.G. (1989). A Theory for Multiresolution Signal Decomposition: Wavelet Representation. IEEE Trans. Anal Pattern. Mach. Intel., II(7).
Luo, L., & Sun, Jinwei. (2018). A novel bilinear functional link neural network filter for nonlinear active noise control. http://www.elsevier.com/open-access/userlicense/1.0/,.
Morra P., et al. (2018). Control OF Streaky Disturbances In The Boundary Layer Over A Flat Plate. 31st congress of the international council of the aeronautical sciences. Belo horizonte, brazil: http://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0473_paper.pdf.
Muslim, A.T., Subekti, S., Ali, I. K. (2022). Rancang Bangun Mesin Bubut CNC Berbasis Control MACH3. SENASTIK Inovasi Teknologi dalam Menjawab Tantangan Revolusi Industri 4.0 di Era Pandemi.
Nibourel, Pierre,. (2022). Reactive control of 2nd Mack mode in a supersonic boundary layer with freestream velocity/density variations. https://arxiv.org/pdf/2206.06224.
Niu, W., et al. (2019). Adaptive vibration suppression of time-varying structures with enhanced FxLMS algorithm. Mechanical Systems and Signal Processing, 93-107.
Olinto, C.R., Indrusiak, M.L.S, & Moler, S.V. (2006). Experimental Study of Bistable Flow in Tube Arrays, M. from Braz. soc. from Mechanic. Science. & Eng. April- May, 2(28), 233.
Padhi, T., Chandra, M., et al. (2018). New Hybrid Active Noise Control System with Combination of Convex Time and Frequency Domain Filtered-X LMS Algorithm. Circuit System Signal Process, 37, 3275–3294. https://doi.org/10.1007/s00034-018-0784-x.
Qiu, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet filter-based weak signature detection method and its application to rolling element bearing prognostication, Journal of Sound and Vibration, 289, 1066–1090.
Qiu, Z., Lee, C.M., Xu, Z.H., & Sui, L.N. (2016). Multi-resolution filtered-x LMS algorithm based on discrete wavelet transforms for active noise control. Mechanical Systems and Signal Processing, 66, 458-469.
Shaharuddin, Nik M.R., & Darus, IZM,. (2013). System Identification of Flexibly Mounted Cylindrical Pipe due to Vortex Induced Vibration. https://www.academia.edu/download/31132208/1569694073.pdf.
Subekti1, S., Guntur, H.L., Djanali, V.S., & Syaifudin, A. (2022). Simulation and Dynamic System Modeling in an Elastically Supported Rigid Cylinder for Vibration Energy Harvesting . In: Kolhe, M., Muhammad, A., El Kharbachi, A., Yuwono, T.Y. (eds) Recent Advances in Renewable Energy Systems. Lecture Notes in Electrical Engineering, 876. Springer, Singapore. https://doi.org/10.1007/978-981-19-1581-9_7.
Subekti2, S., Setiawan, A.B., and Hammid, A. (2019). Simulation of Robot Arm for Diabetes Mellitus Patients. Journal of Physics: Conference Series, 2nd International Conference on Advance & Scientific Innovation, Medan, Indonesia, 1424.
Sun, Z., & Blu, T. (2022). A Nonlinear Steerable Complex Wavelet Decomposition Of Images. http://137,189.32.179/~tblu/monsite/pdfs/sun2201.pdf.
Tong, X., & Suh, C.S. (2014). Wavelet-Based LMS Filtered-X Algorithm for Permanent Magnet Synchronous Motor Control. Proceedings of the 2014 ASME International Mechanical Engineering Congress and Exhibition. Volume 4B: Dynamics, Vibration, and Control. Montreal, Quebec, Canada. (pp. 14–20). V04BT04A039. LIKE ME.
Wang, Enhao, & Xu, Wanhai . (2019). The Effect Of Cubic Stiffness Nonlinearity On The Vortexinduced Vibration Of A Circular Cylinder At Low Reynolds Numbers. https://strathprints.strath.ac.uk/76469/1/Wang_etal_OE_2019_The_effect_of_cubic_stiffness_nonlinear.
Wenchao, N., Chengzhe, Z., Bin, L., & Wei, W. (2019). Adaptive vibration suppression of timevarying structures with improved FxLMS algorithm. Mechanical Systems and Signal Processing, 118, 93–107.
Wu, Kevin, and Breuer, KS. (2006). Control of the Turbulent Boundary Layer using FxLMS, Feed forward Architecture. AIA.
Zhao, J., & Jacono, D. Lo. (2018). Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder. https://oatao.univ-toulouse.fr/22882/1/Zhao_22882.pdf, https://doi.org/10.1017/jfm.2018.357.
DOI: https://doi.org/10.26760/elkomika.v11i2.479
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.