Optimasi Kinerja Fuel Cell pada Sistem Kereta Hibrida menggunakan Metode External Energy Maximization Strategy
Abstract
ABSTRAK
Dalam sistem sumber daya hibrida, strategi manajemen energi (EMS) pada dasarnya hanya mengatur pembagian daya tanpa mempertimbangkan optimalisasi kinerja sistem. Oleh karena itu pada penelitian ini dirancang EMS berbasis optimasi pada kereta hibrida dengan sumber daya fuel cell (FC), baterai dan superkapasitor dengan metode External Energy Maximization Strategy (EEMS). Strategi ini dirancang untuk memaksimalkan energi yang disuplai oleh baterai dan superkapasitor melalui state of charge (SOC) baterai dan tegangan DC bus sehingga dapat meminimalisasi konsumsi hidrogen dan meningkatkan efisiensi keseluruhan sistem. Hasil simulasi memperlihatkan bahwa strategi ini mampu memaksimalkan kinerja baterai dan superkapasitor. Efisiensi sistem berhasil ditingkatkan menjadi 86,37% dan konsumsi hidrogen berhasil dikurangi 10% dari strategi pembandingnya. State of charge (SOC) baterai juga mampu dipertahankan untuk tetap dalam rentang batas yang telah ditentukan.
Kata kunci: EMS, kereta hibrida, fuel cell, baterai, superkapasitor, optimasi
Â
ABSTRACT
The energy management strategy (EMS) in a hybrid system essentially only regulates power sharing without considering system performance optimization. This study developed an EMS based on the optimization of hybrid train with fuel cell (FC), battery, and supercapacitor power sources using the External Energy Maximization Strategy (EEMS). This strategy is intended to maximize the energy supplied by battery and supercapacitor through the SOC of the battery and DC bus voltage, thereby reducing hydrogen consumption and increasing overall system efficiency. The simulation results show that this strategy can maximize battery and supercapacitor. The system efficiency was successfully increased to 86.37%, and the hydrogen consumption was reduced by 10% when compared to the comparison strategy. The SOC of the battery can also be kept within a certain range.
Keywords: EMS, hybrid train, fuel cell, battery, supercapasitor, optimization
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ali, A. M., & Söffker, D. (2018). Towards optimal power management of hybrid electric vehicles in real-time: A review on methods, challenges, and state-of-the-art solutions. Energies, 11(3), 1–24. https://doi.org/10.3390/en11030476
Arikan, Y., & Cam, E. (2019). Optimizing of Speed Profile in Electrical Trains for Energy Saving with Dynamic Programming. 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019 - Proceedings. https://doi.org/10.1109/ISMSIT.2019.8932874
Fathy, A., Al-Dhaifallah, M., & Rezk, H. (2019). Recent Coyote Algorithm-Based Energy Management Strategy for Enhancing Fuel Economy of Hybrid FC/Battery/SC System. IEEE Access, 7, 179409–179419. https://doi.org/10.1109/ACCESS.2019.2959547
Fernandez, L. M., Garcia, P., Garcia, C. A., Torreglosa, J. P., & Jurado, F. (2010). Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters. International Journal of Hydrogen Energy, 35(11), 5731–5744. https://doi.org/10.1016/j.ijhydene.2010.02.132
Fragiacomo, P., & Genovese, M. (2019). Modeling and energy demand analysis of a scalable green hydrogen production system. International Journal of Hydrogen Energy, 44(57), 30237–30255. https://doi.org/10.1016/j.ijhydene.2019.09.186
Fragiacomo, P., Piraino, F., & Genovese, M. (2020). Insights for industry 4.0 applications into a hydrogen advanced mobility. Procedia Manufacturing, 42(2019), 239–245. https://doi.org/10.1016/j.promfg.2020.02.077
Garcia, P., Fernandez, L. M., Garcia, C. A., & Jurado, F. (2010). Energy management system of fuel-cell-battery hybrid tramway. IEEE Transactions on Industrial Electronics, 57(12), 4013–4023. https://doi.org/10.1109/TIE.2009.2034173
Han, Y., Cao, N., Hong, Z., Li, Q., & Chen, W. (2016). Experimental Study on Energy Management Strategy for Fuel Cell Hybrid Tramway. 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings. https://doi.org/10.1109/VPPC.2016.7791686
Kang, J., Guo, Y., & Liu, J. (2020). Rule-based energy management strategies for a fuel cellbattery hybrid locomotive. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration: Connecting the Grids Towards a Low-Carbon High-Efficiency Energy System, EI2 2020, 45–50. https://doi.org/10.1109/EI250167.2020.9346652
Kapetanović, M., Núñez, A., van Oort, N., & Goverde, R. M. P. (2021). Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains. Applied Energy, 294. https://doi.org/10.1016/j.apenergy.2021.117018
Lü, X., Qu, Y., Wang, Y., Qin, C., & Liu, G. (2018). A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Conversion and Management, 171, 1273–1291. https://doi.org/10.1016/j.enconman.2018.06.065
Motapon, S. N., Dessaint, L. A., & Al-Haddad, K. (2014). A robust H2-Consumptionminimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft. IEEE Transactions on Industrial Electronics, 61(11), 6148–6156. https://doi.org/10.1109/TIE.2014.2308148
Njoya Motapon, S., Dessaint, L. A., & Al-Haddad, K. (2014). A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Transactions on Industrial Electronics, 61(3), 1320–1334. https://doi.org/10.1109/TIE.2013.2257152
Peng, H., Li, J., Deng, K., Thul, A., Li, W., Lowenstein, L., Sauer, Di. U., & Hameyer, K. (2019). An efficient optimum energy management strategy using parallel dynamic programming for a hybrid train powered by fuel-cells and batteries. 2019 IEEE Vehicle Power and Propulsion Conference, VPPC 2019 - Proceedings. https://doi.org/10.1109/VPPC46532.2019.8952323
Ramadan, H. S., Becherif, M., & Claude, F. (2017). Energy Management Improvement of Hybrid Electric Vehicles via Combined GPS/Rule-Based Methodology. IEEE Transactions on Automation Science and Engineering, 14(2), 586–597. https://doi.org/10.1109/TASE.2017.2650146
Smith, D., Douglas, R., & Naeem, W. (2019). Fuzzy Rule-Based Energy Management Strategy for a Parallel Mild-Hybrid Electric Bus. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2018, 4–8. https://doi.org/10.1109/ESARS-ITEC.2018.8607670
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893
Zhang, H., Yang, J., Zhang, J., Song, P., & Li, M. (2020). Optimal energy management of a fuel cell-battery-supercapacitor-powered hybrid tramway using a multi-objective approach. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234(5), 511–523. https://doi.org/10.1177/0954409719849804
Zhang, W., Li, J., Xu, L., & Ouyang, M. (2017). Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy. Energy Conversion and Management, 134, 59–69. https://doi.org/10.1016/j.enconman.2016.11.007
DOI: https://doi.org/10.26760/elkomika.v11i2.537
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.