Study on Image Processing Method and Data Augmentation for Chest X-Ray Nodule Detection with YOLOv5 Algorithm




Saat ini, deteksi dini kanker paru-paru dapat dilakukan dengan sistem Computer Aided Diagnosis (CAD) berbasis AI. Oleh karena itu, peningkatan perfoma sistem CAD sangat diperlukan. Dalam studi ini, berbagai teknik pengolahan citra dan augmentasi data diterapkan untuk mengevaluasi performa deteksi nodul paru-paru pada citra X-Ray dada dengan algoritma YOLOv5. Dataset publik yang terdiri dari 1500 data latih dan 516 data uji beserta dengan anotasi nodulnya digunakan dalam simulasi. Hasil simulasi menunjukkan bahwa model YOLOv5 menghasilkan presisi, recall, dan nilai mAP yang tinggi dengan nilai masing-masing 0,811, 0,776, dan 0,858, walaupun tidak menggunakan teknik pengolahan citra dan augmentasi data. Hasil validasi silang dengan dengan dataset publik JSRT dengan augmentasi data tiga kali menunjukkan bahwa YOLOv5s memiliki performa yang lebih baik untuk deteksi nodul pada paru-paru dibandingkan variasi model YOLOv5s lainnya, dengan nilai presisi 0,719 dan nilai recall 0,630.

Kata Kunci: nodul paru, YOLOv5, X-Ray dada, pengolahan citra, augmentasi data



Recently, early detection of lung cancer can be performed with AI-based Computer Aided Diagnosis (CAD) system. Therefore, the performance improvement of CAD is urgently needed. In this study, various image processing and data augmentation techniques were carried out to evaluate the performance of lung nodule detection on chest X-Ray images using YOLOv5 object detection algorithms. Public dataset consist of 1500 train and 516 test data along with the annotated nodules were used. The simulation results showed that the YOLOv5 model produced high precision, recall, and mAP@0.5 values of 0.811, 0.776, and 0.858, respectively although no data augmentation and image processing techniques were performed on the previous dataset. Cross-validation results with JSRT public dataset with three times the augmentation data sets showed that YOLOv5s has better performance for nodule detection with the other model with precision and recall of 0.719 and 0.630, respectively.

Keywords: lung nodule, YOLOv5, X-Ray, image processing, data augmentation

Kata Kunci

Lung Nodule; YOLOv5; X-Ray; Image Processing; Data Augmentation

Teks Lengkap:

PDF (English)


Ausawalaithong, W., Marukatat, S., Thirach, A., & Wilaiprasitporn, T. (2018). Automatic Lung Cancer Prediction from Chest X-ray Images Using the Deep Learning Approach. 2018 11th Biomedical Engineering International Conference (BMEiCON), (pp. 1–5).

Berg, V. J., Young, S., Carolus, H., Wolz, R., Saalbach, A., Hidalgo, A., Giménez, A., & Franquet, T. (2015). A novel bone suppression method that improves lung nodule detection : Suppressing dedicated bone shadows in radiographs while preserving the remaining signal. International Journal of Computer Assisted Radiology and Surgery, 11(4), 641–655.

Chen, S., Suzuki, K., & MacMahon, H. (2011). Development and evaluation of a computeraided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Medical Physics, 38(4), 1844–1858.

Ding, Y., Li, Z., & Yastremsky, D. (2021). Real-time Face Mask Detection in Video Data.

Gang, P., Zhen, W., Zeng, W., Gordienko, Y., Kochura, Y., Alienin, O., Rokovyi, O., & Stirenko, S. (2018). Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), (pp. 878–883).

Gordienko, Y. G., Gang, P., Hui, J., Zeng, W., Kochura, Y., Alienin, O., Rokovyi, O., & Stirenko, S. G. (2017). Deep Learning with Lung Segmentation and Bone Shadow Exclusion Techniques for Chest X-Ray Analysis of Lung Cancer. ArXiv, abs/1712.0.

Hayati, M., Muchtar, K., Roslidar, Maulina, N., Syamsuddin, I., Elwirehardja, G. N., & Pardamean, B. (2023). Impact of CLAHE-based image enhancement for diabetic retinopathy classification through deep learning. Procedia Computer Science, 216, 57–66.

Humbarwadi, S. (2020). Object Detection with RetinaNet. Keras.Io.

Jin, Z. (2018). ChestX-ray nodule detection | Kaggle.

Jung, H., Kim, B., Lee, I., Yoo, M., Lee, J., Ham, S.-Y., Woo, O., & Kang, J. (2018). Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. PLoS ONE, 13.

Knight, S. B., Crosbie, P. A., Balata, H., Chudziak, J., Hussell, T., & Dive, C. (2017). Progress and prospects of early detection in lung cancer. Open Biology, 7(9).

Li, X., Shen, L., & Luo, S. (2018). A Solitary Feature-Based Lung Nodule Detection Approach for Chest X-Ray Radiographs. IEEE Journal of Biomedical and Health Informatics, 22(2), 516–524.

Li, X., Shen, L., Xie, X., Huang, S., Xie, Z., Hong, X., & Yu, J. (2020). Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artificial Intelligence in Medicine, 103, 101744.

Luo, Y., Zhang, Y., Sun, X., Dai, H., & Chen, X. (2021). Intelligent Solutions in Chest Abnormality Detection Based on YOLOv5 and ResNet50. Journal of Healthcare Engineering, 2021, 2267635.

Maindola, G. (2021). Introduction to YOLOv5 Object Detection with Tutorial - MLK - Machine Learning Knowledge. Machine Learning Knowledge.

Matsumoto, T., Doi, K., Kano, A., Nakamura, H., & Nakanishi, T. (1993). [Evaluation of the potential benefit of computer-aided diagnosis (CAD) for lung cancer screenings using photofluorography: analysis of an observer study]. Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica, 53(10), 1195–1207.

Oğul, B. B., Koşucu, P., Özçam, A., & Kanik, S. D. (2015). Lung nodule detection in X-ray images: A new feature set. IFMBE Proceedings, 45, 150–155.

Orbán, G., & Horváth, G. (2011). IFMBE Proceedings 37 - A Hybrid Lung Nodule Detection Scheme on Chest X-ray Images (Vol. 37).

Raddar. (2020). Nodules in Chest X-rays (JSRT) | Kaggle.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.

Schultheiss, M., Schober, S. A., Lodde, M., Bodden, J., Aichele, J., Müller-Leisse, C., Renger, B., Pfeiffer, F., & Pfeiffer, D. (2020). A robust convolutional neural network for lung nodule detection in the presence of foreign bodies. Scientific Reports, 10(1).

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

Udeshani, K. A. G., Meegama, G., & Fernando, T. G. I. (2011). Statistical Feature-based Neural Network Approach for the Detection of Lung Cancer in Chest X-Ray Image. International Journal of Image Processing (IJIP), 5, 425–434.



  • Saat ini tidak ada refbacks.


ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206) Fax. 7202892

Surat Elektronik :

Statistik Pengunjung

Free counters!


Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License