Deteksi Automatis Skema Modulasi Sinyal OFDM menggunakan Ciri Statistik dan Klasifikasi PSO
Abstract
Pengenalan format modulasi dari sinyal yang dideteksi merupakan salah satu bahasan penting pada sistem intelligent receiver yang digunakan untuk aplikasi di bidang militer maupun komersial. Oleh karena itu, pada penelitian ini dilakukan klasifikasi skema modulasi pada sinyal OFDM yaitu QPSK, 16-QAM dan 64-QAM. Sinyal OFDM tersebut disimulasikan melewati kanal frequency selective fading dan additive white gaussian noise. Sistem klasifikasi yang dibuat menggunakan ekstraksi ciri statistik dan pengklasifikasi berupa diagram keputusan dengan threshold yang dioptimasi menggunakan algoritma particle swarm optimization (PSO). Pada proses klasifikasi ditambahkan sistem voting dengan skenario penggunaan jumlah simbol OFDM sebanyak 1, 5, 10, 15 dan 20. Hasil akurasi klasifikasi yang optimum didapatkan pada penggunaan lima simbol OFDM yaitu 100 %, 99 %, 96 % untuk klasifikasi QPSK, 16-QAM, 64-QAM pada minimum SNR receiver standar WiMAX IEEE 802.16e.
Kata kunci: klasifikasi skema modulasi OFDM, ciri statistik, PSO.
Modulation recognition of the detected signal is one of important topics on intelligent receiver system used for military and commercial applications. (Therefore) This research explored the classifications of the OFDM signal modulation scheme namely QPSK, 16-QAM and 64-QAM. The OFDM signal was simulated to pass through frequency selective fading channel and additive white gaussian noise. The classification system was developed using statistical feature extraction with a decision diagrams (tree diagram) as a classifier optimized by PSO algorithm. The increasing number of OFDM symbols in the classification process that applied a voting system improved the accuracy of the classification of each modulation scheme. The optimum accuracy of the classification had been obtained when five OFDM symbols were applied in the classification scenario. The accuracy was 100% for QPSK classification, 99 % for 16-QAM classification and 96 % for 64-QAM classification on the minimum SNR accepted by the receiver of a system that applied a standard WiMax IEEE 802.16e.
Keywords: classification modulation schemes OFDM, statistical characteristics, PSO.
Full Text:
PDF (Bahasa Indonesia)References
A Dobre, Octavia. (2012). A Survey of Automatic Modulation Classification Techniques: Classical Approach and New Trends. Kanada : Memorial University of Newfoundland.
Goldsmith, Andrea. (2005). Wireless Communication. USA New York: Cambridge University Press.
D. Grimaldi, S. Rapuano and G. Truglia. (2002). An Automatic Digital Classifier for Measurements on Telecommunication Networks. Proc. IEEE Instrumentation and Measurement Technology, pp. 957-962.
Wijanto, Heroe. (2011). Transformasi Data dan Ekstraksi Ciri Statistik Orde Tinggi Untuk Rekognisi Modulasi Otomatik. Bandung : Institut Teknologi Bandung.
Madya Saputri, Desti. (2012).Klasifikasi Tipe Modulasi Menggunakan Metoda Deteksi Selubung Kompleks Dan Parameter Statistik. Bandung : Institut Teknologi Telkom.
Shimbo, Daisuke and Ikuo Oka. (2010). A Modulation Classification Using Amplitude Moments in OFDM systems. Proc IEEE ISITA 2010, Taichung, Taiwan, October 17-20, page 288-293.
B Reddy Sharath. Tevfik Yücek and Hüeyin Arslan. (2003). An Efficient Blind Modulation detection Algorithm for Adaptive OFDM Systems. Proc. IEEE 0-7803-7954-3/03 page 1895-1899.
Misbahuddin. (2011). Artificial Neural Network Weights Optimization Based on Particle Swarm Optimization. Indonesia : Dielektrika.
Santosa Budi. (2012). Tutorial Particel Swarm Optimization. Surabaya : Teknik Industri ITS Sukolilo
Sarita Mahapatra. (2011). Performance Evaluation of PSO Based Classifier for Classification of Multi-dimensional Data with Variation of PSO Parameters in Knowledge Discovery Database . International Journal of Advanced Science and Technology, Vol. 34, September
Wimax Forum. (2008). Mobile Release 1.0 Channel Model. WiMax Forum Proprietary – Subject to Change Without Noticeâ€. Sumber: http://www.wimaxforum.org, diakses pada 18 Februari 2014.
DOI: https://doi.org/10.26760/elkomika.v3i2.133
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.