PID Controller Simulation on Single Axis Solar Tracking System
Abstract
ABSTRAK
Efisiensi yang rendah pada solar cell dipengaruhi oleh beberapa factor yaitu tingkat radiasi, suhu, dan sudut instalasi. Penelitian ini membahas upaya meningkatkan performa solar panel yaitu dengan menggunakan sistem pelacak surya sumbu tunggal. Dalam penelitian sistem pelacak surya sumbu tunggal ini dimodelkan dengan menggunakan PID controller pada software Matlab Simulink. Dalam metode tracking system, solar cell disimulasikan pada sumbu tunggal yang berorientasi pada sudut elevasi, sebagai masukan dan pengoptimasian kontrol posisi yang tepat terhadap arah pergerakan matahari pada pukul 07.00 – 17.00 wib. Hasil simulasi didapatkan penggunan kontrol PID pada perancangan single axis solar tracking system menunjukkan hasil yang baik, dimana kontroler yang dirancang dapat mendeteksi arah pergerakan matahari dengan cukup akurat. Sudut elevasi terendah yaitu 1,7 derajat dan tertinggi 68,21 derajat. Solar tracking system memiliki potensi menyerap lebih banyak radiasi matahari untuk mendapatkan output lebih baik yang dihasilkan dari solar cell.
Kata kunci: solar cell, sumbu tunggal, tracking system, PID controller, Simulink Matlab
Â
ABSTRACT
The low efficiency of the solar cell is influenced by several aspect, namely radiation levels, temperature, and tilt angle. This research discusses improving solar panels' performance using a single-axis tracking system. This research modelled a singleaxis of solar cell tracking system using a PID controller in Matlab Simulink software. In the tracking system method, the solar cell is simulated on a single axis oriented to elevation angle as input and optimization of precise position control to direct the sun's movement at 07.00 – 17.00 WIB. The simulation results shown that using a PID control in designing a single-axis of solar cell tracking system shows significant results, where the controller design can accurately detect the direction of the sun's movement. Furthermore, the lowest elevation angle is 1.7 degrees, and the highest is 68.21 degrees. Furthermore, solar tracking systems have the potential to absorb more radiation for a greater output of solar cells.
Keywords: solar cells, single axis, tracking system, PID controller, Simulink Matlab
Keywords
Full Text:
PDFReferences
Amelia, A. R., Irwan, Y. M., Safwati, I., Leow, W. Z., Mat, M. H., & Rahim, M. S. A. (2020). Technologies of solar tracking systems: A review. IOP Conference Series: Materials Science and Engineering, 767(1). https://doi.org/10.1088/1757-899X/767/1/012052
Aung, E. E. (2019). Single Axis Solar Tracking System. In International Journal of Science and Engineering Applications (Vol. 8). www.ijsea.com
Banik, A., Shrivastava, A., Manohar Potdar, R., Kumar Jain, S., Gopal Nagpure, S., & Soni, M. (2021). Design, Modelling, and Analysis of Novel Solar PV System using MATLAB. Materials Today: Proceedings, 51, 756–763. https://doi.org/10.1016/j.matpr.2021.06.226
Batayneh, W., Bataineh, A., Soliman, I., & Hafees, S. A. (2019). Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction, 98, 102–109. https://doi.org/10.1016/j.autcon.2018.11.011
Hafez, A. Z., Yousef, A. M., & Harag, N. M. (2018). Solar tracking systems: Technologies and trackers drive types – A review. Renewable and Sustainable Energy Reviews, 91, 754–782. Elsevier Ltd. https://doi.org/10.1016/j.rser.2018.03.094
Halder, S., Sharma, A., Doda, R., & Professor, A. (2021). Single Axis Solar Tracking System Using Arduino. International Journal For Technological Research In Engineering, 9(4). www.ijtre.com
Handoyo, E. A., Ichsani, D., & Prabowo. (2013). The optimal tilt angle of a solar collector. Energy Procedia, 32, 166–175. https://doi.org/10.1016/j.egypro.2013.05.022
Hanwate, S. D., & Hote, Y. v. (2018). Design of PID controller for sun tracker system using QRAWCP approach.
Jamroen, C., Fongkerd, C., Krongpha, W., Komkum, P., Pirayawaraporn, A., & Chindakham, N. (2021). A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 299. https://doi.org/10.1016/j.apenergy.2021.117295
Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., & Unkat, S. (2020). A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 37. https://doi.org/10.1016/j.seta.2019.100618
Mane S. G. , Iranna Korachagaon, M. R. Hans. (2018). Simulation of Dual Axis Solar Tracking System. International Conference on Information, Communication, Engineering and Technology (ICICET). IEEE.
Ocłoń, P., Cisek, P., Kozak-Jagieła, E., Taler, J., Taler, D., Skrzyniowska, D., & Fedorczak-Cisak, M. (2020). Modeling and experimental validation and thermal performance assessment of a sun-tracked and cooled PVT system under low solar irradiation. Energy Conversion and Management, 222. https://doi.org/10.1016/j.enconman.2020.113289
Pulungan, A. B., Son, L., Syafii, Huda, S., & Ubaidillah, U. (2021). Improvement Of A Solar Panel Tracking System Using Additional Mass Position Adjustment. International Journal of GEOMATE, 21(86), 92–99. https://doi.org/10.21660/2021.86.j2293
Racharla, S., & Rajan, K. (2017). Solar tracking system–a review. International Journal of Sustainable Engineering, 10(2), 72–81. Taylor and Francis Ltd. https://doi.org/10.1080/19397038.2016.1267816
Revati, D., & Natarajan, E. (2020). I-V and P-V characteristics analysis of a photovoltaic module by different methods using Matlab software. Materials Today: Proceedings, 33, 261–269. https://doi.org/10.1016/j.matpr.2020.04.043
Sabir, M. M., & Ali, T. (2016). Optimal PID controller design through swarm intelligence algorithms for sun tracking system. Applied Mathematics and Computation, 274, 690–699. https://doi.org/10.1016/j.amc.2015.11.036
Setiawan, B., Purnomo, M. H., Ashari, M., & Hiyama, T. (2013). Advanced control of on-ship solar tracker using adaptive wide range ANFIS. International Journal of Innovative Computing, Information and Control, 9(6), 2585–2896.
Singh, H., Sirisamphanwong, C., & Santhi Rekha, S. M. (2016). Effect of Tilt and Azimuth Angle on the Performance of PV Rooftop System. Applied Mechanics and Materials, 839, 159–164. https://doi.org/10.4028/www.scientific.net/amm.839.159
Sukmajati, S., & Hafidz, M. (n.d.). Perancangan Dan Analisis Pembangkit Listrik Tenaga Surya Kapasitas 10 Mw On Grid Di Yogyakarta (Vol. 7, Issue 1).
Wang, L. (2020). PID control system design and automatic tuning using MATLAB/Simulink. John Wiley & Sons.
DOI: https://doi.org/10.26760/elkomika.v11i1.58
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.