Estimasi Jarak pada Sistem Koordinat Berbasis Metode Haversine menggunakan Tapis Kalman

BUDI SETIADI, RIDWAN SOLIHIN, TATA SUPRIYADI, TOTO TOHIR, SUDRAJAT SUDRAJAT

Abstract


ABSTRAK

Kesalahan GPS (Global Positioning System) dalam menentukan titik koordinat dipengaruhi faktor terhalang oleh bangunan, kondisi cuaca, dan hal lain yang dapat mengurangi akurasi dari GPS. Penelitian ini, digunakan tapis Kalman untuk meminimalisir kesalahan pada alat GPS tipe BN-220 ketika menentukan jarak. Tapis Kalman dirancang dengan dua tahapan yaitu proses prediksi dan koreksi. Pada tahap prediksi, data mentah dari koordinat akan diihitung varian kesalahannya dengan mengatur matriks Q. Kemudian, pada tahap koreksi dilakukan perbaikan dengan menentukan penguatan Kalman berdasarkan matriks R dan hasilnya digunakan untuk mengestimasi data keluaran. Berdasarkan pengujian pada delapan titik uji, diperoleh bahwa penggunaan tapis Kalman menghasilkan rata-rata selisih kesalahan sekitar 5,27% terhadap Google Maps jika dibandingkan dengan tanpa tapis Kalman sebesar 7,56%.

Kata kunci: GPS BN-220, tapis Kalman, Haversine, Google Maps

 

ABSTRACT

GPS (Global Positioning System) error in determining the coordinates is influenced by factors obstructed by buildings, weather conditions, and other things that can reduce the accuracy of GPS. In this study, the Kalman filter was used to minimize errors in the BN-220 type GPS device when determining the distance. Kalman filter is designed with two stages, namely the prediction and correction process. In the prediction stage, the raw data from the coordinates will be calculated for the error variance by adjusting the Q matrix. Then, in the correction stage, improvements are made by determining the Kalman gain based on the R matrix and the results are used to estimate the output data. Based on testing at eight test points, it was found that the use of the Kalman filter resulted in an average error difference of around 5.27% against Google Maps when compared to without the Kalman filter of 7.56%.

Keywords: GPS BN-220, Kalman filter, Haversine, Google Maps


Keywords


GPS BN-220; tapis Kalman; Haversine; Google Mapss

References


Acharya, J., & Gaur, S. (2018). Edge compression of GPS data for mobile IoT. 2017 IEEE Fog World Congress, FWC 2017, (pp. 1–6).

Al Tahtawi, A. R., Andika, E., Yusuf, M., & Harjanto, W. N. (2020). Pengembangan Low-cost Quadrotor dengan Misi Waypoint Tracking Berbasis Pengendali PID. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika , 8(1), 189.

Alkan, H., & Celebi, H. (2019). The Implementation of Positioning System with Trilateration of Haversine Distance. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, (pp. 1–6).

Ashari, A. A., Setiawan, E., & Syauqi, D. (2020). Sistem Navigasi Waypoint Pada Robot Beroda Berdasarkan Global Positioning System Dan Filter Kalman. 4(7), 2075–2082.

Havelock, J., Oommen, B. J., & Granmo, O. C. (2018). Novel Distance Estimation Methods Using “Stochastic Learning on the Line†Strategies. IEEE Access, 6, 48438–48454.

Li, X. (2019). A GPS-Based Indoor Positioning System with Delayed Repeaters. IEEE Transactions on Vehicular Technology, 68(2), 1688–1701.

Liu, X., Liu, X., Zhang, W., & Yang, Y. (2020). Interacting Multiple Model UAV Navigation Algorithm Based on a Robust Cubature Kalman Filter. IEEE Access, 8, 81034–81044.

Muhammad, D., Hidayat, E. W., & Aldya, A. P. (2021). Rancang Bangun Media Informasi Jalur Angkot Kota Tasikmalaya Berbasis Augmented Reality Markerless GPS. SAIS/Scientific Articles of Informatics Students, 4(1), 35–41.

Nwadiugwu, W. P., Kim, S. H., & Kim, D. S. (2021). Precise-point- positioning estimations for recreational drones using optimized cubature-extended kalman filtering. IEEE Access, 9, 134369–134383.

Patil, V., & Atrey, P. K. (2020). GeoSecure-R: Secure Computation of Geographical Distance using Region-anonymized GPS Data. Proceedings - 2020 IEEE 6th International Conference on Multimedia Big Data, BigMM 2020, (pp. 28–36).

Song, W. (2020). An integrated GPS/vision UAV navigation system based on Kalman filter. Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Information Systems, ICAIIS 2020, (pp. 376–380).

Supriyadi, T., Salsabila, A., Solihin, R., Hanifatunnisa, R., Setiadi, B., & Afni, S. (2021). Position Coordination Aid for Blind Persons Based on LoRa Point to Point. Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT 2021) , (pp. 310–315).

Syafitri, N., Susana, R., Ammarprawira, I. F., Fauzi, M. S., & Jabbaar, A. A. (2020). The Autonomous Disaster Victim Search Robot using the Waypoint Method. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(2), 347.

Xu, Y., Xu, K., Wan, J., Xiong, Z., & Li, Y. (2018). Research on Particle Filter Tracking Method Based on Kalman Filter. Proceedings of 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, Imcec, (pp. 1564–1568).

Zhou, X., Xu, X., Yao, Y., & Zhao, H. (2021). A Robust Quaternion Kalman Filter Method for MIMU/GPS In-Motion Alignment. IEEE Transactions on Instrumentation and Measurement, 70, 1-9.




DOI: https://doi.org/10.26760/elkomika.v11i1.207

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License