Kombinasi Deteksi Objek, Pengenalan Wajah dan Perilaku Anomali menggunakan State Machine untuk Kamera Pengawas
Abstract
ABSTRAK
Saat ini sistem kamera pengawas mengandalkan manusia dalam melakukan penerjemahan pada rekaman gambar yang terjadi. Perkembangan computer vision, machine learning, dan pengolahan citra dapat dimanfaatkan untuk membantu peran manusia dalam melakukan pengawasan. Penelitian ini merancang sistem kerja kamera yang terdiri dari tiga modul yaitu deteksi objek, pengenalan wajah, dan perilaku anomali. Deteksi objek memakai HOG-SVM, pengenalan wajah menggunakan CNN dengan arsitektur VGG-16 memanfaatkan transfer learning, dan perilaku anomali memakai spatiotemporal autoencoder berdasarkan threshold. Ketiga modul tersebut diuji menggunakan metrik akurasi, presisi, recall, dan f1-score. Ketiga modul diintegrasikan dengan state machine menjadi satu kesatuan sistem. Kinerja modul memiliki akurasi 88% untuk deteksi objek, 98% untuk pengenalan wajah, dan 78% untuk perilaku anomali. Hasil tampilan riil dapat diakses secara sederhana dan nirkabel melalui web.
Kata kunci: HOG-SVM, CNN, VGG-16, spatiotemporal autoencoder, state machine
ABSTRACT
Nowadays, the surveillance camera system relies on human to interpret the recorded images. Computer vision, machine learning, and image processing can be utilized to assist the human role in supervising. This study designed a camera work system consisting of three main modules, namely object detection, face recognition, and anomaly behavior. Object detection used the HOG-SVM combination. Facial recognition used CNN with the VGG-16 architecture that utilized transfer learning. Anomalous behavior used spatiotemporal autoencoder based on threshold. Modules are tested using the metrics of accuracy, precision, recall, and f1-score. The three modules are integrated using a state machine into one system. The performance of the module had 88% accuracy for object detection, 98% for facial recognition, and 78% for anomalous behavior. Real time video recording can be accessed wireless via web-based.
Keywords: HOG-SVM, CNN, VGG-16, spatiotemporal autoencoder, state machine
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aber, J., Ward Aber, S., Marzolff, I., & Ries, J. (2019). Small-format aerial photography and UAS imagery (2nd ed.). Elsevier.
Andriana, D., Prihatmanto, A. S., Hidayat, E. M. I., & Machbub, C. (2017). Combination of face and posture features for tracking of moving human visual characteristics. International Journal on Electrical Engineering and Informatics, 9(3), 616–631.
Chong, Y. S., & Tay, Y. H. (2017). Abnormal event detection in videos using spatiotemporal autoencoder. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10262 LNCS, 189–196.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3).
Dalal, N., & Triggs, B. (2005). Histogram of Oriented Gradients for Human Detection. In Computer Vision and Pattern Recognition (Vol. 1). IEEE.
Danukosumo, K. P. (2017). Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Citra Candi Berbasis Gpu. E-Journal Universitas Atma Jaya Yogyakarta.
Edgar, T., & Manz, D. (2017). Research Methods for Cyber Security (1st ed.). Elsevier.
Fang, W., Ding, L., Love, P. E. D., Luo, H., Li, H., Peña-Mora, F., … Zhou, C. (2020). Computer vision applications in construction safety assurance. Automation in Construction, 110(November 2019), 103013.
Fennelly, L., & Perry, M. (2016). Physical Security 5th Ed. Elsevier Science.
Kalbo, N., Mirsky, Y., Shabtai, A., & Elovici, Y. (2020). The security of ip-based video surveillance systems. Sensors (Switzerland), 20(17), 1–27.
Kinasih, Fabiola Maria Teresa Reetno, Saragih, C. F. D., Machbub, C., Rusmin, P. H., Yulianti, L., & Andriana, D. (2019). State machine implementation for human object tracking using combination of mobilenet, KCF tracker, and HOG features. International Journal on Electrical Engineering and Informatics, 11(4), 697–712.
Kinasih, Fabiola Maria Teresa Retno, MacHbub, C., Yulianti, L., & Rohman, A. S. (2020). Centroid-Tracking-Aided Robust Object Detection for Hospital Objects. 6th International Conference on Interactive Digital Media, ICIDM 2020, (Icidm).
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks Alex. In Advances in neural information processing systems.
Maharani, D. A., MacHbub, C., Rusmin, P. H., & Yulianti, L. (2020). Improving the Capability of Real-Time Face Masked Recognition using Cosine Distance. 6th International Conference on Interactive Digital Media, ICIDM 2020.
Maharani, D. A., Machbub, C., Yulianti, L., & Rusmin, P. H. (2020). Particle filter based single shot multibox detector for human moving prediction. 2020 IEEE 10th International Conference on System Engineering and Technology, (pp. 7–11).
Miao, Z., Zou, S., Li, Y., Zhang, X., Wang, J., & He, M. (2016). Intelligent Video Surveillance System Based on Moving Object Detection and Tracking. DEStech Transactions on Engineering and Technology Research, (iect).
Putra, W. (2016). KLASIFIKASI CITRA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA CALTECH 101. E-Journal ITS.
Puvvadi, U. L. N., Di Benedetto, K., Patil, A., Kang, K. D., & Park, Y. (2015). Cost-effective security support in real-time video surveillance. IEEE Transactions on Industrial Informatics, 11(6), 1457–1465.
Shidik, G. F., Noersasongko, E., Nugraha, A., Andono, P. N., Jumanto, J., & Kusuma, E. J. (2019). A systematic review of intelligence video surveillance: Trends, techniques, frameworks, and datasets. IEEE Access, 7, 170457–170473.
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings, (pp. 1–14).
Wiley, V., & Lucas, T. (2018). Computer Vision and Image Processing: A Paper Review. International Journal of Artificial Intelligence Research, 2(1), 22.
Yosafat, S. R., Machbub, C., & Hidayat, E. M. I. (2017). Design and implementation of Pan Tilt control for face tracking. 2017 7th IEEE International Conference on System Engineering and Technology, (pp. 217–222).
DOI: https://doi.org/10.26760/elkomika.v11i1.86
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.