Deteksi Suara Corona Discharge berdasarkan Noise menggunakan Metode LPC dan Euclidean Distance

NURMIATI PASRA, MIFTAHUL FIKRI, KARTIKA TRESYA MAURIRAYA, TRI RIJANTO, I GUSTI PUTU ASTO BUDITJAHJANTO

Abstract


ABSTRAK

Kegagalan isolasi masih sering terjadi pada sistem kelistrikan di Indonesia yang disebabkan oleh fenomena tegangan tinggi seperti corona discharge (CD). Hal ini dikarenakan deteksi dini kegagalan isolasi belum dapat dilakukan. Salah satu bentuk CD ialah suara. Langkah awal untuk mendeteksi dini kegagalan isolasi ialah diperlukannya suatu penelitian yang dapat mengklaster suara CD berdasarkan noise yang merupakan tujuan penelitian ini. Pengamatan dilakukan pada kubikal 20-22 kV dengan cara menaik-turunkan tegangan dengan elektroda jarum-batang sejauh 3 cm. Klasifikasi suara CD ditetapkan menjadi 3 cluster yaitu CD murni, CD disertai noise mendesis dan noise mendesis murni. Clustering dilakukan menggunakan metode linear predictive coding (LPC) sebagai ekstraksi ciri dan Euclidean distance sebagai pencocokan pola hasil ekstraksi. Adapun suhu di dalam kubikal antara 25℃ - 32℃ dan kelembaban berkisar 70% - 90%. Hasil akurasi clustering rata-rata yang diperoleh adalah 100% untuk data training dan 97,78% untuk data testing.

Kata kunci: corona discharge, linear predictive coding, Euclidean distance, kegagalan isolasi

 

ABSTRACT

Insulation failures often occur in the electrical system in Indonesia caused by high voltage phenomena such as corona discharge (CD). This is because early detection of insulation failure cannot be carried out. One form of CD is sound. The first step for early detection of insulation failure is the need for a study that can cluster CD sounds based on noise which is the purpose of this study. Observations were made at 20-22 kV cubical by increasing and decreasing the voltage with a needle-rod electrode as far as 3 cm. The classification of CD sound is set into 3 clusters i.e. pure CD, CD with hissing noise, and pure hissing noise. Clustering is done using linear predictive coding (LPC) as feature extraction and Euclidean distance as pattern matching extraction results. The temperature inside the cubical is between 25℃ - 32℃ and the humidity is around 70% - 90%. The average clustering accuracy results obtained are 100% and 97.78% for training and testing data.

Keywords: author’s guideline, document’s template, format, style, abstract


Keywords


corona discharge; linear predictive coding; Euclidean distance; kegagalan isolasi

References


Al-geelani, N. A., Piah, M. A. M., & Abdul-Malek, Z. (2018). Identification of acoustic signals of corona discharges under different contamination levels using wavelet transform. Electrical Engineering, 100(2), 1059–1067. https://doi.org/10.1007/s00202-017-0568-5

Bolat, S., & Kalenderli, Ö. (2017). Estimation of corona location from audible noise. Electrical Engineering. https://doi.org/10.1007/s00202-017-0578-3

Borghei, M., & Ghassemi, M. (2021). A deep learning approach for discrimination of single-And multi-source corona discharges. IEEE Transactions on Plasma Science, 49(9), 2936–2945. https://doi.org/10.1109/TPS.2021.3102115

Dewi, I. A., Zulkarnain, A., & Lestari, A. A. (2018). Identifikasi Suara Tangisan Bayi menggunakan Metode LPC dan Euclidean Distance. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(1), 153. https://doi.org/10.26760/elkomika.v6i1.153

Fikri, M., Christiono, & K., I. G. M. (2022). Clustering Fenomena Corona Discharge berdasarkan Suara menggunakan Metode LPC dan Euclidean Distance. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika , 10(3), 689–701.

Helmiyah, S., Riadi, I., Umar, R., Hanif, A., Yudhana, A., & Fadlil, A. (2020). Identifikasi Emosi

Manusia Berdasarkan Ucapan Menggunakan Metode Ekstraksi Ciri LPC dan Metode Euclidean Distance. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(6), 1177. https://doi.org/10.25126/jtiik.2020722693

Illias, H., Teo Soon Yuan, Bakar, A. H. A., Mokhlis, H., Chen, G., & Lewin, P. L. (2012). Partial discharge patterns in high voltage insulation. PECon 2012 - 2012 IEEE International Conference on Power and Energy, December, 750–755. https://doi.org/10.1109/PECon.2012.6450316

Karimi, M., Majidi, M., Mirsaeedi, H., Arefi, M. M., & Member, S. (2019). A Novel Application of Deep Belief Networks in Learning Partial Discharge Patterns for Classifying Corona, Surface and Internal Discharges. IEEE Transactions on Industrial Electronics, PP(c), 1. https://doi.org/10.1109/TIE.2019.2908580

Li, X., Wang, J., Lu, T., & Cui, X. (2018). Statistical analysis of audible noise generated by AC corona discharge from single corona sources. High Voltage, 3(3), 207–216. https://doi.org/10.1049/hve.2017.0159

Liu, Y., Xv, J., Liu, Y., Yuan, H., & Cui, Y. (2020). A Method for the Indirect Detection of Audible Noise from High-Voltage Direct Current Transmission Lines. IEEE Transactions on Instrumentation and Measurement, 69(7), 4358–4369. https://doi.org/10.1109/TIM.2019.2942251

Masarrang, R., Patras, L. S., & Tumaliang, H. (2019). Efek Korona pada Saluran Transmisi Gardu Induk Tello Sulawesi Selatan. Jurnal Teknik Elektro dan Komputer, 8(2), 67–74. https://doi.org/10.35793/jtek.8.2.2019.23980

Menesy, A. S., Jiang, X., Ali, M. A., Sultan, H. M., Alfakih, N. M., & Kamel, S. (2020). Partial Discharge and Breakdown Characteristics in Small Air Gap Length Under DC Voltage in Needle-Plane Electrode Configuration. 2020 IEEE IAS Industrial and Commercial Power System Asia Technical Conference, (pp. 869–874).

Montanari, G. C., Ghosh, R., Cirioni, L., Galvagno, G., & Mastroeni, S.

(2022). Partial Discharge Monitoring of Medium Voltage Switchgears : Self-condition Assessment using an Embedded Bushing Sensor. IEEE Transactions on Power Delivery, 37(1), 85–92. https://doi.org/10.1109/TPWRD.2021.3053658

Pengfei Xu, Sören Hedtke, Bo Zhang, Martin Pfeiffer, Christian M. Franck, J. H. (2021). Research Collection. IEEE Transactions on Power Delivery, 36(1), 1–8. https://doi.org/10.3929/ethz-a-010025751

Portugues, I. E., Moore, P. J., Glover, I. A., Johnstone, C., McKosky, R. H., Goff, M. B., & van der Zel, L. (2009). RF-based partial discharge early warning system for air-insulated substations. IEEE Transactions on Power Delivery, 24(1), 20–29. https://doi.org/10.1109/TPWRD.2008.2005464

Prihatnolo, S. T., Syakur, A., & Facta, M. (2011). Pengukuran Tegangan Tembus Dielektrik Udara pada Berbagai Sela dan Bentuk Elektroda dengan Variasi Temperatur Sekitar. Jurnal Teknik Elektro Undip, 1–8.

Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceding of the IEEE.

Rabiner, L., & Juang, B.-H. (1993). Fundamentals of speech recognition. Prentice Hall.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Re. Proceedings of The IEEE, 77(2), 257–288. https://doi.org/10.25300/MISQ/2017/41.3.08

Rusdi, S. (2019). Analisa Terbentuknya Korona Pada Saluran Kubicle Tegangan 20Kv Serta Pengaruhnya Terhadap Rugi-Rugi Daya. Lensa, 2(48), 14–21.

Syakur, A., Facta, M., Elektro, J. T., Diponegoro, U., & Sudharto, J. P. (2005). Perbandingan Tegangan Tembus Media Isolasi Udara Dan Media Isolasi Minyak Trafo Menggunakan Elektroda Bidang-Bidang. Transmisi, 7(2), 26-29–29. https://doi.org/10.12777/transmisi.7.2.26-29

Wang, X., Taylor, N., & Edin, H. (2016). Effect of Humidity on Partial Discharge in a Metal-Dielectric Air Gap on Machine Insulation at Trapezoidal Testing Voltages. Journal of Electrostatics, 83, 88–96. https://doi.org/10.1016/j.elstat.2016.08.003

Widyastuti, C., & Dharma, I. N. B. Y. (2019). Dampak Korona pada SUTET 500 kV Terhadap Radio Interference. Energi dan Kelistrikan: Jurnal Ilmiah, 11(2), 87–97.

Zhu, M. X., Wang, Y. B., Liu, Q., Zhang, J. N., Deng, J. B., Zhang, G. J., Shao, X. J., & He, W. L. (2017). Localization of Multiple partial Discharge Sources in Air-Insulated Substation Using Probability-Based Algorithm. IEEE Transactions on Dielectrics and Electrical Insulation, 24(1), 157–166. https://doi.org/10.1109/TDEI.2016.005964




DOI: https://doi.org/10.26760/elkomika.v11i1.72

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License