Korelasi Data Sensor UV pada Sistem Deteksi Kebakaran dengan Metode Scanning CW/CCW
Abstract
ABSTRAK
Salah satu unsur penyebab kebakaran adalah api. Berbagai sistem deteksi kebakaran digunakan untuk pengidraan seperti sensor tunggal non-visual. akan tetapi, kebanyakan sensor-sensor tersebut memiliki keterbatasan sensitifitas, missed detection dan false alarm. Oleh karena itu, kebenaran data diperlukan untuk mengetahui potensi kebakaran di sekitar area sensor. Pada penelitian ini, mikrokontroler digunakan untuk proses komputasi data berdasarkan sektor dari sensor UV, dimana metode scanning CW/CCW digunakan untuk mendapatkan hasil dari beberapa korelasi data. Hasil percobaan, sistem deteksi dengan metode CW-CCW dapat meningkatkan sensitifitas dan probablitas kebenaran 37,14 % dan 5,47 % untuk Δ𜃠= 11,25o, dan 48,66 % dan 8,01 % untuk Δ𜃠= 5,625o.
Kata kunci: sistem deteksi kebakaran, missed detection, false alarm, sensor UV, metode scanning CW/CCW.
Â
ABSTRACT
One of the elements that cause fire is flame. Various fire detection systems are used for sensing such as a single non-visual sensor. however, most of these sensors have limited sensitivity, detection area, missed detection, and false alarms. Therefore, The correctness of the data is needed to determine the potential for fires around the sensor area. In this work, a microcontroller is used to process data computing based on the sector of the UV sensor, where the CW/CCW scanning method is used to obtain results from several data correlations. The results of the experiment, the detection system with the CW-CCW method can increase the sensitivity and probability of correct to 37.14% and 5.47% for Δ𜃠= 11.25o, and 48.66 % and 8.01% for Δ𜃠= 5.625o.
Keywords: fire detection systems, missed detection, false alarm, UV sensor, CW/CCW scanning method.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Andrew, S. (2019). Malaysia, choked by smog of forest fires in Indonesia, issues 2 million face masks to students. CNN. Retrieved from https://edition.cnn.com/2019/09/19/asia/malaysia-indonesia-fires-smogtrnd/index.html
Bosch, I., Gomez, S., Molina, R., & Miralles, R. (2009). Object discrimination by infrared image processing. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5602 LNCS(PART 2), 30–40. https://doi.org/10.1007/978-3-642-02267-8_4
Costea, A., & Schiopu, P. (2018). New design and improved performance for smoke detector. Proceedings of the 10th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2018, (3), 1–7. https://doi.org/10.1109/ECAI.2018.8679032
Crompton, A. J., Gamage, K. A. A., Trivedi, D., & Jenkins, A. (2018). The effect of gamma and beta radiation on a UVTRON flame sensor: Assessment of the impact on implementation in a mixed radiation field. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124394
Da Silva Júnior, L. A. S., Delgado, R. C., Pereira, M. G., Teodoro, P. E., & da Silva Junior, C. A. (2019). Fire dynamics in extreme climatic events in western amazon. Environmental Development, (June), 1–12. https://doi.org/10.1016/j.envdev.2019.06.005
De Iacovo, A., Venettacci, C., Colace, L., Scopa, L., & Foglia, S. (2017). PbS colloidal quantum dot visible-blind photodetector for early indoor fire detection. IEEE Sensors Journal, 17(14), 4454–4459. https://doi.org/10.1109/JSEN.2017.2710301
Dwomoh, F. K., Wimberly, M. C., Cochrane, M. A., & Numata, I. (2019). Forest degradation promotes fire during drought in moist tropical forests of Ghana. Forest Ecology and Management, 440, 158–168. https://doi.org/10.1016/j.foreco.2019.03.014
Gong, F., Li, C., Gong, W., Li, X., Yuan, X., Ma, Y., & Song, T. (2019). A real-time fire detection method from video with multifeature fusion. Computational Intelligence and Neuroscience, 2019. https://doi.org/10.1155/2019/1939171
Jalalifar, M., & Byun, G. S. (2016). A Wide Range CMOS Temperature Sensor with Process Variation Compensation for On-Chip Monitoring. IEEE Sensors Journal, 16(14), 5536–5542. https://doi.org/10.1109/JSEN.2016.2568242
Kumar, A., Gaur, A., Singh, A., Kumar, A., Kulkarni, K. S., Lala, S., … Mukhopadhyay, S. C. (2019). Fire Sensing Technologies: A Review. IEEE Sensors Journal, 19(9), 3191–3202. https://doi.org/10.1109/JSEN.2019.2894665
L’vov, A. A., Komarov, V. V., Kuzin, S. A., & L’vov, P. A. (2018). Fire detection and alarm sensor for avionics based on current loop circuit. Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018, 2018-Janua, 1109–1112. https://doi.org/10.1109/EIConRus.2018.8317284
Lin, Z. D., Young, S. J., & Chang, S. J. (2015). CO2 Gas Sensors Based on Carbon Nanotube Thin Films Using a Simple Transfer Method on Flexible Substrate. IEEE Sensors Journal, 15(12), 7017–7020. https://doi.org/10.1109/JSEN.2015.2472968
Rachman, F. Z., Hendrantoro, G., & Wirawan, W. (2022). Optimization of A Fire Detection System Based on Radial Sector Scanning Using An UV Sensor. Submitted to Journal IEEE Sensors Letters.
Shen, Z., Wang, J., & Wei, G. (2020). An improved partial discharge detection system based on uv pulses detection. Sensors (Switzerland), 20(17), 1–15. https://doi.org/10.3390/s20174767
Sloan, S., Locatelli, B., Wooster, M. J., & Gaveau, D. L. A. (2017). Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Global Environmental Change, 47(November 2016), 95–109. https://doi.org/10.1016/j.gloenvcha.2017.10.001
Verma, A., Prakash, S., Srivastava, V., Kumar, A., & Mukhopadhyay, S. C. (2019). Sensing, Controlling, and IoT Infrastructure in Smart Building: A Review. IEEE Sensors Journal, 19(20), 1–1. https://doi.org/10.1109/jsen.2019.2922409
Yan, D., Yang, Y., Hong, Y., Liang, T., Yao, Z., Chen, X., & Xiong, J. (2018). Low-cost wireless temperature measurement: Design, manufacture, and testing of a PCB-based wireless passive temperature sensor. Sensors (Switzerland), 18(2), 1–14. https://doi.org/10.3390/s18020532
DOI: https://doi.org/10.26760/elkomika.v11i1.16
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.