Optimasi Teknologi Computer Vision pada Robot Industri Sebagai Pemindah Objek Berdasarkan Warna
Abstract
ABSTRAK
Computer vision merupakan teknologi yang dapat mendeteksi objek yang ada disekitarnya pada penelitian ini membahas optimasi teknologi computer vison pada robot sebagai pemindah objek berdasarkan warna. Sistem pada robot terdiri dari pengenalan bola berwarna dan memindahkan bola berwarna sesuai dengan warna yang dideteksi. Teknologi computer vision pada pixy 2 camera dapat mendeteksi objek berwarna menggunakan metode deteksi real-time dengan hasil optimasi yang tinggi yaitu 0,2 detik ketika mendeteksi objek berwarna. Pengujian pengenalan objek berwarna dilakukan sebanyak tiga kali pada setiap objek berwarna dengan tingkat akurasi sebesar 100%. Optimasi computer vision dapat membantu robot mengenali objek berwarna.
Kata kunci: Computer Vision, Deteksi Objek Berwarna, Pixy2 Camera, Real-Time
Â
ABSTRACT
Computer vision is a technology that can detect objects that are around it. This study discusses the optimization of computer vision technology on robots as object transfers based on color. The system on the robot consists of recognizing colored balls and moving colored balls according to the detected color. Computer vision technology on the pixy 2 camera can detect colored objects using a real-time detection method with a high optimization result of 0.2 seconds when detecting colored objects. The color object recognition test was carried out three times on each colored object with an accuracy rate of 100%. Computer vision optimization can help robots recognize colored objects.
Keywords: Computer Vision, Color Object Detection, Pixy2 Camera, Real-Time
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Alshbatat, & dkk. (2020). Automated Vision-based Surveillance System to Detect Drowning Incidents in Swimming Pools . 2020 Advances in Science and Engineering Technology International Conferences (ASET).
Athifa, dkk. (2019). Evaluasi Karakteristik Deteksi Warna Rgb Sensor Tcs3200 Berdasarkan Jarak Dan Dimensi Objek. JETri, 105-120.
Dang, & dkk. (2016). Design of a New Cost-Effective Head for a Low-Cost Humanoid Robot. 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON).
Esteves, & dkk. (2017). Collision Avoidance System for an Autonomous Sailboat. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, (hal. 3539-3544).
Fang, & dkk. (2017). Real-Time RGB-D based People Detection and Tracking System . Internasional Conference on Mechatronics and Automation, (hal. 1937-1940).
Hadi. (2020). Line Follower Robot Arduino (using robot to control Patient bed who was infected with Covid-19 Virus). 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT).
Han Li, & dkk. (2018). Line Tracking with Pixy Cameras on a Wheeled Robot Prototype. 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW).
Kulkarni, & dkk. (2019). An Automated Computer Vision Based System for Bottle Cap Fitting Inspection. Twelfth International Conference on Contemporary Computing (IC3).
Masril, & dkk. (2020). Analisa Morfologi Dilasi untuk Perbaikan Kualitas Citra Deteksi Tepi pada Pola Batik Menggunakan Operator Prewitt dan Laplacian of Gaussian. JURNAL RESTI (Rekayasa dan Teknologi Informasi), 1052-1057.
Pathak, & dkk. (2017). Line Follower Robot for Industrial Manufacturing Process. International Journal of Engineering Inventions, 10-17.
Prabowo, & dkk. (2018). DETEKSI DAN PERHITUNGAN OBJEK BERDASARKAN WARNA MENGGUNAKAN COLOR OBJECT TRACKING. www.ejournal.unib.ac.id/index.php/pseudocode, 85-91.
Qiao, & dkk. (2020). Design of automatic scoring device for soccer goal . International Conference on Computer Information and Big Data Applications (CIBDA), (hal. 336-339).
Robin, & dkk. (2020). Computer Vision for Hand Gestures . IEEE International Conference on Convergence to Digital World – Quo Vadis (ICCDW 2020) .
Soans, & dkk. (2017). Object Tracking Robot. International Conference on Communication and Electronics Systems, (hal. 790-793).
Song. (2020). The Application of Computer Vision in Responding to the Emergencies of Autonomous Driving. International Conference on Computer Vision, Image and Deep Learning (CVIDL), (hal. 1-5).
Tayal, & dkk. (2020). Line Follower Robot: Design and Hardware . 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), (hal. 10-13).
Valsalan, & dkk. (2019). Implementation of an Emergency Indicating Line Follower and Obstacle Avoiding Robot. 16th International Multi-Conference on Systems, Signals & Devices (SSD'19), (hal. 479-482).
DOI: https://doi.org/10.26760/elkomika.v11i1.46
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.