Pemodelan Sistem Radar untuk Analisis Pengaruh Pakaian sebagai Obstacle Pendeteksian Pernapasan

AZIZKA AYU DHIYANI, ALOYSIUS ADYA PRAMUDITA, YUYU WAHYU, HARFAN HIAN RYANU

Abstract


ABSTRAK

Continuous Wave Radar (CW Radar) memiliki banyak aplikasi terutama dalam bidang kesehatan. CW Radar yang bekerja pada rentang frekuensi lebar memiliki keunggulan seperti bandwidth lebar, dan tingkat akurasi yang tinggi sehingga dapat digunakan untuk deteksi pergerakan dinding dada atau perut pada pernapasan. Namun, obstacle berupa pakaian dapat memengaruhi deteksi pernapasan manusia dengan sistem Radar. Pada penelitian ini dianalisis pengaruh pakaian terhadap deteksi pernapasan. Sistem Radar dimodelkan dengan Vector Network Analyzer (VNA), BladeRF, serta MATLAB untuk mengubah domain frekuensi menjadi domain waktu. Percobaan dilakukan pada empat jenis kain dengan jarak objek ke antena yaitu 45 cm. Diperoleh bahwa obstacle memiliki atenuasi kecil dan delay yang tidak signifikan, serta hasil BladeRF menunjukkan pola pernapasan dapat dideteksi. Sehingga disimpulkan bahwa obstacle tidak memengaruhi hasil pendeteksian pernapasan menggunakan sistem Radar.

Kata kunci: CW Radar, deteksi pernapasan, pakaian, VNA, BladeRF.

 

ABSTRACT

Continuous Wave Radar (CW Radar) has many applications, especially in the health sector. CW Radar that works in a wide frequency range has advantages such as wide bandwidth, and a high level of accuracy so that it can be used for detection of chest or abdominal wall movement on breathing. However, obstacles in the form of clothing can affect the detection of human breathing with the Radar system. In this work, the effect of clothing on respiratory detection is analyzed. The Radar system is modeled with Vector Network Analyzer (VNA), BladeRF, and MATLAB to convert the frequency domain to the time domain. The experiment was carried out on four types of fabric with a distance of 45 cm from the object to the antenna. It was found that the obstacle has a small attenuation and insignificant delay, and the BladeRF results show that breathing patterns can be detected. So it is concluded that the obstacle does not affect the results of breathing detection using the Radar system.

Keywords: CW Radar, respiratory detection, clothing, VNA, BladeRF.


Keywords


CW Radar; deteksi pernapasan; pakaian; VNA; BladeRF

References


Alemaryeen, A., Noghanian, S., & Fazel-Rezai, R. (2018). Antenna Effects on Respiratory Rate Measurement Using a UWB Radar System. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 87–93. https://doi.org/10.1109/JERM.2018.2813534

Ambarini, R., Pramudita, A. A., Ali, E., & Setiawan, A. D. (2018). Single-Tone Doppler Radar System for Human Respiratory Monitoring. 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), (pp. 571–575). https://doi.org/10.1109/EECSI.2018.8752871

Cutugno, M., Robustelli, U., & Pugliano, G. (2020). Low-Cost GNSS Software Receiver Performance Assessment. Geosciences, 10(2). https://doi.org/10.3390/geosciences10020079

Gibson, P. J. (1979). The Vivaldi Aerial. Eur Microwave Conf, 101–105. https://doi.org/10.1109/EUMA.1979.332681

Guyton, A. C. (1999). Textbook of Medical Physiology W3. Philadelphia, 10.

Hung, W.-P., Chang, C.-H., & Lee, T.-H. (2017). Real-Time and Noncontact Impulse Radio Radar System for μm Movement Accuracy and Vital-Sign Monitoring Applications. IEEE Sensors Journal, 17(8), 2349–2358. https://doi.org/10.1109/JSEN.2017.2670919

Hutapea, H., & Santoso, K. A. (2018). Analisis Pengujian S-Parameter Pada Perangkat Duplexer Dan Kabel Coaxial Dengan Frekuensi 1.800 MHZ.

Kano, S., Dobashi, Y., & Fujii, M. (2018). Silica Nanoparticle-Based Portable Respiration Sensor for Analysis of Respiration Rate, Pattern, and Phase During Exercise. IEEE Sensors Letters, 2(1), 1–4. https://doi.org/10.1109/LSENS.2017.2787099

Li, W., Tan, B., & Piechocki, R. (2018). Passive Radar for Opportunistic Monitoring in E-Health Applications. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-10. https://doi.org/10.1109/JTEHM.2018.2791609

Liang, Q., Xu, L., Bao, N., Qi, L., Shi, J., Yang, Y., & Yao, Y. (2019). Research on Non-Contact Monitoring System for Human Physiological Signal and Body Movement. Biosensors, 9(2), 58. https://doi.org/10.3390/bios9020058

Liu, Z., Chen, Y., & Yang, S. (2022). In-Band Scattering Cancellation Techniques for Vivaldi Antenna Array. IEEE Transactions on Antennas and Propagation, 70(5), 3411–3420. https://doi.org/10.1109/TAP.2021.3137475

Malanowski, M., & Kulpa, K. (2011). Target Detection in Continuous-Wave Noise Radar in the Presence of Impulsive Noise. Acta Physica Polonica A, 119, 467–472. https://doi.org/10.12693/APhysPolA.119.467

Pisa, S., Pittella, E., & Piuzzi, E. (2016). A survey of radar systems for medical applications. IEEE Aerospace and Electronic Systems Magazine, 31(11), 64–81. https://doi.org/10.1109/MAES.2016.140167

Praktika, T. O., Pramudita, A. A., & Wahyu, Y. (2019). Design of Vivaldi Antenna for UWB Respiration Radar. 2019 International Conference on Information and Communications Technology (ICOIACT), (pp. 11–16). https://doi.org/10.1109/ICOIACT46704.2019.8938464

Pramudita, A. A., Praktika, T. O., & Jannah, S. (2021). Radar Modeling Experiment Using Vector Network Analyzer. 2020 International Symposium on Antennas and Propagation (ISAP) (pp. 99–100). https://doi.org/10.23919/ISAP47053.2021.9391495

Ryanu, H., Setiawan, D., & Ewer, E. (2021). Desain Antena Mikrostrip UWB dengan Peningkatan Lebar pita dan Karakteristik Triple Notch Band. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 10, 249–256. https://doi.org/10.22146/jnteti.v10i3.1878

Salvado, R., Loss, C., Gonçalves, R., & Pinho, P. (2012). Textile Materials for the Design of Wearable Antennas: A Survey. Sensors (Basel, Switzerland), 12, 15841–15857. https://doi.org/10.3390/s121115841

Singh, V. (2014). A Review of Textile Materials for Wearable Antenna. Journal of Microwave Engineering & Technologies (ISSN: 2349-9001), 1, 7–14.

Skolnik M. (2018). Radar Handbook, Third Edition (3 ed., Vol. 53). McGraw-Hill Education.

White, J. (2004). Electromagnetic Fields and Waves (hal. 183–306). https://doi.org/10.1002/0471474827.ch7

Xiong, Y., Chen, S., Dong, X., Peng, Z., & Zhang, W. (2017). Accurate Measurement in Doppler Radar Vital Sign Detection Based on Parameterized Demodulation. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4483–4492. https://doi.org/10.1109/TMTT.2017.2684138

Yamada, Y. (2022). Dielectric Properties of Textile Materials: Analytical Approximations and Experimental Measurements—A Review. Textiles, 2(1), 50–80. https://doi.org/10.3390/textiles2010004

Zaytsev, A. (2022). Digital Signals Processing (hal. 255–261). https://doi.org/10.1007/978-3-030-94873-3_31




DOI: https://doi.org/10.26760/elkomika.v10i4.932

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License