Perbandingan Deteksi Letak Polip pada Citra Colonoscopy menggunakan CNN dengan Arsitektur RetinaNet

RONALDO DAVE JONATHAN, MEILAN JIMMY HASUGIAN, ERWANI MERRY SARTIKA

Sari


ABSTRAK

Penyakit kanker kolorektal diawali munculnya polip pada usus besar yang dapat berubah menjadi tumor ganas dan menimbulkan kanker. Sehingga diperlukan screening terhadap usus besar menggunakan colonoscopy. Menurut penelitian sekitar 26% polip terlewat saat prosedur colonoscopy. Pada penelitian ini dilakukan implementasi Convolutional Neural Network (CNN) dengan arsitektur RetinaNet untuk mendeteksi letak polip pada citra colonoscopy. Perbandingan dilakukan pada 3 jenis arsitektur yaitu ResNet-50, ResNet-101, dan ResNet-152 sebagai backbone pada arsitektur RetinaNet. Model yang terbaik berdasarkan metrik Intersection over Union (IoU) adalah model RetinaNet (Backbone = ResNet-50) tanpa data augmentation dengan nilai 0.8415. Sedangkan model yang terbaik berdasarkan metrik Average Precision (AP) adalah RetinaNet (Backbone = ResNet-101) dengan data augmentation dengan nilai AP25 = 0.9308, AP50 =0.9039, AP75 = 0.6985.

Kata kunci: polip, colonoscopy, Convolutional Neural Network (CNN), RetinaNet

 

ABSTRACT

Colorectal cancer always begins with the appearance of polyps in the colon which can turn into malignant tumors and cause cancer. Therefore, it is necessary to screen the large intestine using colonoscopy. However, according to studies, about 26% of polyps are missed during colonoscopy procedures. In this study, a Convolutional Neural Network (CNN) with RetinaNet architecture was implemented to detect the location of polyps in colonoscopy images. Comparisons were made on 3 types of architecture, namely ResNet-50, ResNet-101, and ResNet-152. From the evaluation results, the best model based on the Intersection over Union (IoU) metric is the RetinaNet model (Backbone = ResNet-50) without augmentation data with a value of 0.8415. While the best model based on the Average Precision (AP) metric is RetinaNet (Backbone = ResNet-101) with data augmentation with values AP25 = 0.9308, AP50 = 0.9039, AP75 = 0.6985.

Keywords: polyp, colonoscopy, Convolutional Neural Network (CNN), RetinaNet


Kata Kunci


polip; colonoscopy; Convolutional Neural Network (CNN), RetinaNet

Teks Lengkap:

PDF

Referensi


ACS. (2020). Colorectal Cancer Facts and Figures 2020-2022. American cancer society, 66(11), 1–41. https://www.cancer.org

Albawi, S., Mohammed, T. A. M., & Alzawi, S. (2017). Layers of a Convolutional Neural Network. Ieee, 16.

Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., & Vilariño, F. (2015). WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics : The Official Journal of the Computerized Medical Imaging Society, 43, 99–111. https://doi.org/10.1016/j.compmedimag.2015.02.007

Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., Angermann, Q., Romain, O., Rustad, B., Balasingham, I., Pogorelov, K., Choi, S., Debard, Q., Maier-Hein, L., Speidel, S., Stoyanov, D., Brandao, P., Cordova, H., Sanchez-Montes, C., … Histace, A. (2017). Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge. IEEE Transactions on Medical Imaging, 36(6), 1231–1249. https://doi.org/10.1109/TMI.2017.2664042

Cheng, C. L., Kuo, Y. L., Hsieh, Y. H., Tang, J. H., & Leung, F. W. (2021). Comparison of Right Colon Adenoma Miss Rates Between Water Exchange and Carbon Dioxide Insufflation: A Prospective Randomized Controlled Trial. Journal of clinical gastroenterology, 55(10), 869–875. https://doi.org/10.1097/MCG.0000000000001454

Choi, H. N. a., Kim, H. H. e., Oh, J. S. eo., Jang, H. S. an., Hwang, H. S. i., Kim, E. Y. oun., Kwon, J. G. o., & Jung, J. T. a. (2014). Factors influencing the miss rate of polyps in a tandem colonoscopy study. The Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, 64(1), 24–30. https://doi.org/10.4166/kjg.2014.64.1.24

Dobie, K. A., Burke, C., & Editor, T. (2012). Colonoscopy For Dummies, Special Edition.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, (pp. 770–778). https://doi.org/10.1109/CVPR.2016.90

Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., & Johansen, H. D. (2020). Kvasir-SEG: A Segmented Polyp Dataset. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11962 LNCS, 451–462. https://doi.org/10.1007/978-3-030-37734-2_37

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

Patil, A., & Rane, M. (2021). Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition. Smart Innovation, Systems and Technologies, 195, 21–30. https://doi.org/10.1007/978-981-15-7078-0_3

Pidala, M. J., & Cusick, M. V. (2017). The Difficult Colorectal Polyp. Surgical Clinics of North America, 97(3), 515–527. https://doi.org/10.1016/j.suc.2017.01.003

Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601

Silva, J., Histace, A., Romain, O., Dray, X., & Granado, B. (2014). Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, 9(2), 283–293. https://doi.org/10.1007/s11548-013-0926-3




DOI: https://doi.org/10.26760/elkomika.v10i4.946

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206) Fax. 7202892

Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________

Statistik Pengunjung

Free counters!

Web

Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License