Sistem Multi Agen untuk Pelayanan Drone pada Groundbase Docking Station
Abstract
ABSTRAK
Multi-Agent System (MAS) diajukan sebagai solusi untuk mengatasi permasalahan pada groundbase sebuah DDS, di mana pada groundbase terdapat AGV yang bertugas untuk membantu Drone beraktifitas di DDS hingga kemudian berangkat kembali menuju DDS lain. Metode auction serta contract antar agent digunakan dalam pemrosesan request dari Drone dan pembagian sumber daya. Pada MAS diterapkan algoritma prioritas sebagai solusi apabila terjadi konflik antar agen. Pengujian dengan simulasi pada CoppeliaSim dan ROS (Robot Operating System) menunjukkan bahwa penggunaan algoritma prioritas berdampak positif pada MAS yang dibuat. Pada DDS dengan skenario 11 AGV, terjadi peningkatan kemampuan DDS dalam menerima dan memproses request yang datang dari 57.9% menjadi 100%, serta pemecahan deadlock yang terjadi pada DDS dari 10 menjadi 0 sehingga seluruh request dapat terselesaikan.
Kata kunci: Multi-Agent System, Algoritma Prioritas, Drone Docking Station, AGV
Â
ABSTRACT
The Multi-Agent System (MAS) was proposed as a solution to overcome problems in the groundbase of a DDS, where on the groundbase there is an AGV whose job is to help drones carry out activities in DDS and then depart for another DDS. Auction methods and contracts between agents are used in processing requests from drones and sharing resources. In MAS, a priority algorithm is applied as a solution in the event of a conflict between agents. Tests with simulations on CoppeliaSim and ROS (Robot Operating System) show that the use of priority algorithms has a positive impact on the created MAS. In DDS with 11 AGV scenario, there is an increase in DDS ability to receive and process incoming requests from 57.9% to 100%, as well as solving deadlocks that occur in DDS from 10 to 0 so that all requests can be resolved.
Keywords: Multi-Agent System, Priority Algorithm, Drone Docking Station, AGV
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Axak, N., Korablyov, M., & Ushakov, M. (2021). The Development of a Multi-Agent System for Controlling an Autonomous Robot. CEUR Workshop Proceedings, 3013, (pp. 96–105).
Braquet, M., & Bakolas, E. (2021). Greedy Decentralized Auction-based Task Allocation for Multi-Agent Systems. IFAC-PapersOnLine, 54(20), (pp. 675–680).
Gerrits, B., Mes, M., & Schuur, P. (2019). A simulation model for the planning and control of AGVs at automated container terminals. Proceedings - Winter Simulation Conference, 2018-Decem(i), (pp. 2941–2952).
Kalisa Wilson, Ndatinya Eustache and Gakiza Canisius, 2016. Agent-based software architecture for decision making in the data warehouse, International Journal of Current Research, 8, (01), 25174-25178.
Kapitan, R., Veretilnyk, T., & Demyanenko, V. (2017). Development of a Multi-Agent Collision Resolution System At the Supply of Spare Parts and Components To the Production Equipment of Industrial Enterprises. EUREKA: Physics and Engineering, 6(6), 27–34.
Karagoz, C. S., Bozma, H. I., & Koditschek, D. E. (2014). Coordinated navigation of multiple independent disk-shaped robots. IEEE Trans. Robot., 30(6), 1289–1304.
Kato, T., & Kamoshida, R. (2020). Multi-agent simulation environment for logistics warehouse design based on self-contained agents. Applied Sciences (Switzerland), 10(21), 1–20.
Liu, Y., Ji, S., Su, Z., & Guo, D. (2019). Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PLoS ONE, 14(12), 1–21.
Liu, W., Chen, D., & Guo, J. (2018). Goal-Capability-Commitment based Mediation for Multi-Agent Collaboration. Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design, CSCWD 2018, (pp. 353–358).
Liyun, X., Ning, W., & Xufeng, L. (2021). Study on Conflict-free AGVs Path Planning Strategy for Workshop Material Distribution Systems. Procedia CIRP, (pp. 1071–1076).
Osmond, A. B., & Suhono Harso Supangkat. (2019). Platform dan Pemodelan Kerjasama Multi Agen untuk Layanan Pengiriman Barang. Jurnal Sistem Cerdas, 2(1), 22–34.
Pamosoaji, A. K. (2019). Perencanaan Rute dan Kecepatan AGV pada Sistem Pergudangan Menggunakan Algoritma Ant Colony Optimization. SAINTEK: Jurnal Ilmiah Sains Dan Teknologi Industri, 3(2), 52.
Pandian, D. A. P. (2019). Artificial Intelligence Application in Smart Warehousing Environment for Automated Logistics. Journal of Artificial Intelligence and Capsule Networks, 2019(2), 63–72.
Rashidah Mohamad, N., Hafidz Fazli Md Fauadi, M., Azni Jafa, F., Zaki Mohamed Noor, A., & Hisham Nordin, M. (2018). Simulation-Based Multi-Objective Optimization for Distributed Material Transportation System. International Journal of Engineering & Technology, 7(3.20), 92.
Ribas-Xirgo, L., & Chaile, I. F. (2013). Multi-agent-based controller architecture for AGV systems. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, (pp. 0–3).
DOI: https://doi.org/10.26760/elkomika.v10i4.859
Refbacks
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.