Pemodelan Sistem Kendali Motor Induksi Tiga Fasa menggunakan Pengendali Neuro-Fuzzy Melalui Metode Direct Torque Control

KADEK REDA SETIAWAN SUDA, ERA PURWANTO, BAMBANG SUMANTRI, ABDILLAH AZIZ MUNTASHIR, R. OKTAV YAMA HENDRA

Abstract


ABSTRAK

Suatu Motor induksi tiga fasa merupakan alat penggerak listrik yang banyak digunakan di industry. Sistem yang akan dikembangkan dalam penelitian ini salah satunya adalah pengendalian kecepatan motor induksi tiga fasa dengan pemodelan system Direct Torque Control (DTC) dengan pengontrol kecepatan menggunakan Neuro-Fuzzy Controller, hasil yang diperoleh dari pengaturan kecepatan yaitu untuk mencapai keaadan steady hanya membutuhkan waktu 1 sampai 2 sekon dengan rata-rata eror steady 0,175% dengan rata-rata rise time 0,855 detik dan rata-rata overshoot 0,488%. Dengan pemodelan system Direct Torque Control (DTC) menggunakan Neuro-Fuzzy control ini mampu mengatasi kelemahan pada kecepatan motor induksi serta menghasilkan performa kendali yang tinggi, dengan memperkecil overshoot serta menurunkan presentase error steady state dibawah 1%, serta rise time dan settling time rata-rata di bawah 1 detik, sehingga jauh lebih baik dibandingkan dengan menggunakan PI controller.

Kata kunci: DTC, Motor Induksi, Neuro-Fuzzy

 

ABSTRACT

A three-phase induction motor is an electric drive that is widely used in industry. One of the systems that will be developed in this research is the speed control of a three-phase induction motor by modeling the Direct Torque Control (DTC) system with a speed controller using a Neuro-Fuzzy Controller, the results obtained from speed regulation are that to achieve steady state it only takes 1 to 2 hours. 2 seconds with an average steady error of 0.175% with an average rise time of 0.855 seconds and an average overshoot of 0.488%. By modeling the Direct Torque Control (DTC) system using Neuro-Fuzzy control, it is able to overcome the weakness in the speed of the induction motor and produce high control performance, by reducing overshoot and reducing the steady state error percentage below 1%, as well as the average rise time and settling time. the average is under 1 second, so it is much better than using a PI controller

Keywords: DTC, Induction Motor, Neuro-Fuzzy


Keywords


DTC; Motor Induksi; Neuro-Fuzzy

References


Alrijadjis, S. M. (2014). PID Controller Design of Nonlinear System using a New Modified Particle Swarm Optimization with Time-Varying Constriction Coefficient. EMITTER International Journal of Engineering Technology, 2(2), 80-90.

Anthony, Z. (2015). Equivalent Circuits for the M31D-ZA Motors Method ( Case Studies: Currents and Power Factor of Studies : Currents and Power Factor of the motor). IJEET, 49-52.

Bazaz, S. H. (2015). Review of Vektor Control Strategies for Three Phase Induction Motor Drive. International Conference on Recent Developments in Control. Noida: Automation Power Engineering (RDCAPE), (pp. 59-69).

Fauzi, R. H. (2015). Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC) Based On Fuzzy Backstepping . EMITTER International Journal of Engineering Technology, 3(1), 92-114.

Ferdiansyah, I. P. (2016). Fuzzy Gain Scheduling of PID (FGS-PID) for Speed Control Three Phase Induction Motor Based on Indirect Field Oriented Control (IFOC) . EMITTER International Journal of Engineering Technology, 4(2), 237-258.

Goss, J. P. (2013). A Comparison of an Interior Permanent Magnet and Copper Rotor Induction Motor in a Hybrid Electric Vehicle Application. International Electric Machines & Drives Conference, (pp. 220–225).

Hannan, M. A. (2018). Optimization Techniques to Enhance the Performance of Induction Motor Drives: A Review. Renewable and Sustainable Energy Review, 1611–1626.

Hutabalian, R. H. (2016). Desain dan Analisa Inverter Tiga Fasa Dengan Metode SVPWM Sebagai Penggerak Motor Induksi Tiga Fasa Pada Aplikasi Sepeda Listrik. Jurnal Fteknik, 3(2): 5.

Huy, H. L. (1999). Comparison of Field-Oriented Control and Direct Torque Control for Induction Motor Drives. IEEE Industry Applications Conference, (pp. 1245 – 1252).

Kazmierkowski. M. P, B. G. (2004). DTC of pwm inverter-fed AC motors - A Survey. IEEE Trans on Ind.Elec, 744-757.

Khasanah, U. S. S. (2017). Simulasi Pengaturan Kecepatan Motor Induksi 3 Phasa Dengan Direct Torque Control Menggunakan MATLAB. ELEKTRIKAL, 09(1), 13-16.

Mila Fauziyah, A. S. (2019, November ). Penerapan Kontroler Neural Fuzzy Untuk Pengendalian Kecepatan Motor Induksi tiga fasa Pada Mesin Sentrifugal. INKOM, 3(1-2), 53-54.

Milhoub, M. &. (2001). Neuro Fuzzy Conttroller Used To Control the Speed of Induction Motor. Algeria: Faculty of Electrical Engineering, 99-110.

Niravadya, V. S. (2018). Photovoltaic Pumping System using SVPWM based Induction Motor Drive with a High Gain Converter. Second International Conference on Inventive Communication and Computational Technologies (ICICCT), (pp. 1909–1914). Coimbatore.

Noorly, E., A. A. (2018). Pengaturan Kecepatan Putaran Motor Induksi tiga fasa. Journal of Electrical Technology, 73-80.

Riba, J. R.-T. (2016). Rare-earth-free Propulsion Motors For Electric Vehicles: A technology review. Renewable and Sustainable Energy Reviews, 367-379.

Rind, S. J. (2017). Configurations and control of traction motors for electric vehicles: A review. Chinese Journal of Electrical Engineering, 1-17.

Riyadi, S. (2010). Penggerak Kecepatan Variable Pada Motor Induksi Tiga Fasa Bberbasis V/Hz dan Direct Ttorque Control. Unika Soegijapranata.

Sarika, E P, R. S. (Desember 2014). Performance Comparison Of Direct Torque Control Of Two Level And Three Level Neutral Point Clamped Inverter Fed Three Phase Induction Motor. International Conference on Advances in Green Energy (ICAGE), (pp. 17-18).

Schultz, J. W. (2015). Comparing AC Induction with Permanent Magnet Motors in hybrid vehicles and the Impact on the Value Proposition. Parker Hannifin Corporation, 1-15.

Wibowo, B. P. (2014). Traction Control Pada Parallel Hybrid Electric Vehicle (HEV) Menggunakan Metode Kontrol Neuro-Fuzzy Prediktif. Surabaya: Elektro—ITS.

Widodo, T. S. (2005). Sistem Neuro Fuzzy. Yogyakarta: Graha Ilmu.




DOI: https://doi.org/10.26760/elkomika.v10i4.888

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License