Komparasi Metode Optimasi Adam dan SGD dalam Skema Direct Inverse Control untuk Sistem Kendali Data Sikap dan Ketinggian Quadcopter

MUHAMMAD SABILA HAQQI, BENYAMIN KUSUMOPUTRO

Abstract


ABSTRAK

Terdapat banyak variable nonlinear dalam sistem kendali untuk quadcopter sehingga cukup rumit untuk mengatur dinamika penerbangan wahana ini. Untuk mengatasi masalah tersebut akan dikembangkan suatu skema sistem kendali Direct Inverse Control menggunakan Deep Learning berbasis Artificial Neural Network (ANN). Sistem yang dikembangkan akan mengendalikan data sikap dan ketinggian quadcopter. Pada artikel ini akan dibandingkan kinerja dari dua metode optimasi untuk Mean Squared Error pada simulasi, yaitu Adaptive Moment Estimation dan Stochastic Gradient Descent. Hasil menunjukkan metode Adaptive Moment Estimation mampu memberikan nilai Mean Squared Error yang lebih kecil dibandingkan metode Stochastic Gradient Descent untuk semua data sikap dan ketinggian yang dikendalikan dengan nilai 0.0069 untuk roll rate, 0.0057 untuk pitch rate, 0.0062 untuk yaw rate, dan 0.0042 untuk data ketinggian.

Kata kunci: Deep Learning, Artificial Neural Network, Adam, SGD, MSE

 

ABSTRACT

There are many nonlinear variables in the control system for the quadcopter so it is quite complicated to regulate the flight dynamics of this vehicle. To overcome this problem, a Direct Inverse Control control system scheme using Deep Learning based on Artificial Neural Network (ANN) will be developed. The system developed will control the attitude and altitude data of the quadcopter. In this article, we will compare the performance of two optimization methods for Mean Squared Error in simulation, namely Adaptive Moment Estimation and Stochastic Gradient Descent. The results show that the Adaptive Moment Estimation method is able to provide a smaller Mean Squared Error value than the Stochastic Gradient Descent method for all attitude and altitude data controlled with values of 0.0069 for roll rate, 0.0057 for pitch rate, 0.0062 for yaw rate, and 0.0042 for altitude data.

Keywords: Deep Learning, Artificial Neural Network, Adam, SGD, MSE


Keywords


Deep Learning; Artificial Neural Network; Adam; SGD; MSE

References


Amiruddin, B. P., Iskandar, E., Fatoni, A., & Santoso, A. (2020). Deep Learning based System Identification of Quadcopter Unmanned Aerial Vehicle. 3rd International Conference on Information and Communications Technology (ICOIACT) (pp. 165-169). IEEE.

Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., ... & Acero, A. (2013). Recent advances in deep learning for speech research at Microsoft. IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8604-8608). IEEE.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.

Heryanto, M., Suprijono, H., Suprapto, B. Y., & Kusumoputro, B. (2017). Attitude and altitude control of a quadcopter using neural network based direct inverse control scheme. Advanced Science Letters, 23(5), 4060-4064.

Kamanditya, B., & Kusumoputro, B. (2020). θ-D Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control. International Conference on Intelligent Engineering and Management (ICIEM) (pp. 39-43).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Kusumoputro, B., Priandana, K., & Wahab, W. (2015). System identification and control of pressure process rig system using Backpropagation Neural Networks. ARPN Journal of Engineering and Applied Sciences, 10(16), 7190-7195.

Kusumoputro, B., Suprijono, H., Heryanto, M. A., & Suprapto, B. Y. (2016). Development of an attitude control system of a heavy-lift hexacopter using Elman recurrent neural networks. 22nd International Conference on Automation and Computing (ICAC) (pp. 27-31). IEEE.

Muliadi, J., & Kusumoputro, B. (2018). Neural network control system of UAV altitude dynamics and its comparison with the PID control system. Journal of Advanced Transportation

Navabi, M., & Mirzaei, H. (2016). θ-D Based Nonlinear Tracking Control of Quadcopter. 4th International Conference on Robotics and Mechatronics (ICROM), (pp. 331–336).

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., Lopez Garcia, A., Heredia, I., & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52(1), 77-124.

Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv 2015. arXiv preprint arXiv:1503.06462.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Zhang, X., Li, X., Wang, K., & Lu, Y. (2014) A survey of modelling and identification of quadrotor robot. Abstract and Applied Analysis. Hindawi.




DOI: https://doi.org/10.26760/elkomika.v10i2.458

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License