Sintesis Model State-Space ke Embedded System dengan Metode Backward Difference

FERIYONIKA FERIYONIKA

Abstract


ABSTRAK

Realisasi sistem kendali berbasis state-space (seperti state feedback, LQR, MPC, SMC, dll) pada embedded system memerlukan informasi state hanya berdasarkan pembacaan output plant. Penelitian ini bertujuan mendapatkan nilai-nilai state suatu plant dengan menganalisis prosedur mengubah persamaan state-space ke persamaan difference (suatu bentuk persamaan yang dapat direalisasikan ke embedded system) menggunakan metode backward difference. Plant yang digunakan adalah kendali kecepatan yang modelnya didapat dari proses identifikasi. State observer ditambahkan pada model state-space plant untuk mengoreksi kesalahan dalam proses identifikasi. Verifikasi persamaan difference dilakukan dengan membandingkan output model terhadap sinyal plant, dimana didapat nilai RMSE-nya sebesar 0,94. Nilai state yang didapat selanjutnya diujicobakan pada kendali state feedback dengan risetime 3,23 detik, settling time 4,82 detik, overshoot 3,1 %, dan error steady state = 0. Berdasarkan hasil pengujian dapat disimpulkan bahwa metode backward difference dapat digunakan untuk mendapatkan nilai-nilai state plant sehingga berbagai algoritma kendali berbasis nilai state bisa direalisasikan pada embedded system.

Kata kunci: state-space, backward difference, plant, modern control system, state feedback

 

ABSTRACT

Realization of state-space-based control systems (such as state feedback, LQR, MPC, SMC, etc.) in embedded systems requires state information only based on plant output readings.This study aims to obtain states of a plant by using the backward difference method. The plant used is a speed control whose model is obtained from the identification process. State observer is also added to correct the derived model. The verification shows that the obtained states can result output model with RMSE value is 0.94. The states are then tested on the feedback state control with a risetime of 3.23 seconds, a settling time of 4.82 seconds, an overshoot of 3.1%, and a steady state error = 0. This method can be used to obtain plant state values so that various state value-based control algorithms can be realized at the embedded system.

Keywords: state-space, backward difference, plant, modern control system, state feedback.


Keywords


state-space; backward difference; plant; modern control system; state feedback

References


Anjali, B., Vivek, A., & Nandagopal, J. (2016). Simulation and Analysis of Integral LQR Controller for Inner Control Loop Design of a Fixed Wing Micro Aerial Vehicle (MAV). Procedia Technology, 25, 76-83.

Cho, H. (2008). Introduction of Numerical Analysis: Numerical Differentiation. Seoul National University, Department of Nuclear Engineering. Seoul: Seoul National University.

Dorf, & Bishop. (2010). Modern Control System; Chapter 3: State Variable. Upper Saddle River, New Jersey: Prentice Hall.

Dorrah, H., Gabr, W., & Elsayed, M. (2018). Derivation of symbolic-based embedded feedback control stabilization expressions with experimentation. Journal of Electrical Systems and Information Technology, 5(3).

Fahmizal, F., Arrofiq, M., Adrian, R., & Mayub, A. (2019). Robot Inverted Pendulum Beroda Dua (IPBD) dengan Kendali Linear Quadratic Regulator (LQR) . ELKOMNIKA, 7(2).

Haniyah, A., & Hamdin, S. B. (2020). Finite Difference Method for the Biharmonic Equation with Different Types of Mixed Boundary Conditions. IOSR Journal of Mathematics, 16(1), 6-13.

Hernando, G. J., Feriyonika, & Sudarsa, Y. (2019). Model Predictive Control pada kecepatan Motor DC. Politeknik Negeri Bandung, Jurusan Teknik Elektro. Bandung: Politeknik Negeri Bandung.

Kaci, A., Giraud-Audine, C., Giraud, F., Amberg, M., & Lemaire-Semail, B. (2019). LQR based MIMO PID controller for the vector control of and underdamped harmonic oscillator. Mechanical Systems and Signal Processing, 134.

KL Cezar, A. C., Cordeiro, M., Santor, C. D., Cezar, K., Ochoa, A., & Michima, P. (2020). Development of a novel flow control system with arduino micocontroller embedded in double effect absorption chillers using the LiBr/ H2) pair. International Journal of Refrigeration, 111, 124-235.

Li, L., Zhang, H., & Wang, Y. (2021). Stabilization and optimal control of discrete time systems with multiplicative noise and multiple input delays. Systems & Control Letters, 147.

Nguyen, M. L., & Chen, X. (2020). MPC Inspired Dynamical Output Feedback and Adaptive Feedforward Control Applied to Piezo-Actuated Positioning System. IEEE Transactions on Industrial Electronics, 67(5), 3921 - 3931.

Nicolis, D., Allevi, F., & Rocco, P. (2020). Operational Space Model Predictive Sliding Mode Control for Redundant Manipulators. IEEE Transactions on Robotics, 36(4), 1348 - 1355.

Rizvi, S. A., & Lin, Z. (2020). Reinforcement Learning-Based Linear Quadratic Regulation of Continuous-Time Systems Using Dynamic Output Feedback. IEEE Transaction on Cybernetics, 50(11), 4670 - 4679.

Soeroso, K. K., Feriyonika, & Sudarsa, Y. (2018). Kendali LQR pada Kecepatan Motor DC. Politeknik Negeri Bandung, Jurusan Teknik Elektro. Bandung, Indonesia: Politeknik Negeri Bandung.

Sun, X., Hu, C., Lei, G., Guo, Y., & Zhu, J. (2020, Jan). State Feedback Control for a PM Hub Motor Based on Gray Wolf Optimization Algorithm. IEEE Transaction on Power Electronics, Vol.35(1), 1136 - 1146.

Winarno, Y., & Endryansyah. (2020.). System kontrol kecepatan Motor DC pada lift Konvensional dengan Kontrol Linear Quadratic Regulator (LQR) Berbasis Arduino Uno. JURNAL TEKNIK ELEKTRO, 9(2).

Zanma, T., Ohtsuka, T., & Liu, K. (2020). Set-Based State Estimation in Quantizied State Feedback Control System with Quantized Measurement. IEEE Transaction on Control Systems Technology, 28(2), 550 - 557.




DOI: https://doi.org/10.26760/elkomika.v10i1.228

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License