Ventilator Non-Invasive berbasis Kontrol Volume dengan Orifice Plate Flow Meter
Sari
ABSTRAK
Pada penelitian ini diusulkan ventilator noninvasif dengan sistem kendali volume. Ventilator pada umumnya berbiaya mahal, tidak mudah dibawa dan desain yang rumit. Pada penelitian ini dirancang ventilator noninvasif dengan desain cukup sederhana, mudah dibawa, dan ekonomis. Mekanisme kendali volume didapatkan melalui pengukuran aliran dengan prinsip orifice flow meter. Pengukuran aliran ini dilakukan dengan menurunkan persamaan Bernoulli dan persamaan kontinuitas, sehingga didapat persamaan debit aliran. Koefisien discharge optimal pada persamaan debit aliran yang digunakan pada penelitian ini adalah 0,9. Melalui pengujian RR (Respiratory Rate) 12, 16 dan 20 BPM (Breath Per Minute), minute ventilation terbaik diperoleh pada RR 12, yaitu 498,5541±3,3255, dengan simpangan terbesar 4,7714 mL atau sebesar 0,95%. Sedangkan performa terendah pada RR 16 dengan minute ventilation 503,7034±4,1626, simpangan terbesar 8,21 mL atau sebesar 1,64%. Ini mengindikasikan bahwa sistem kendali volume pada ventilator noninvasif berkerja dengan cukup baik. Saat ini ventilator hanya mampu mensuplai tekanan hingga 1,5 kPa atau sekitar 15,296 cmH2O.
Kata kunci: ventilator noninvasif, kontrol volume, orifice flow meter, sensor tekanan, koefisien discharge
Â
ABSTRACT
In this research, a ventilator with a volume control system is proposed. Ventilators are generally expensive, not portable, and have a complex design. In this research, a non-invasive ventilator was designed with a fairly simple design, easy to carry, and of economic value. The volume control mechanism is obtained through-flow measurement with the orifice flow meter principle. This flow measurement is done by deriving the Bernoulli equation and the continuity equation, in order to get the flow rate equation. The optimal discharge coefficient in the flow discharge equation used in this study is 0.9. By RR (Respiratory Rate) testing 12, 16, and 20 BPM (Breath Per Minute), the best minute ventilation is obtained at RR 12, which is 498.5541±3.3255, with the largest deviation of 4.7714 mL or 0.95%. While the lowest performance is on RR 16 with minute ventilation 503.7034±4.1626, the largest deviation is 8.21 mL or 1.64%. A fairly small error indicates that the volume control system on a noninvasive ventilator is designed to work quite well. Currently, the ventilator is only capable of supplying pressure of up to 1.5 kPa or about 15.296 cmH2O.
Keywords: non invasive ventilator, volume control, orifice flow meter, pressure sensor, discharge coefficient
Kata Kunci
Teks Lengkap:
PDFReferensi
Antonelli, M., Conti, G., Esquinas, A., & others. (2007). A multi-center survey on the use in the clinical practice of NIV as first intervention for acute respiratory distress syndrome. Crit
Care Med, 35, 18-25.
Anwar, M. C. (2020, Juni 6). CNBC Indonesia. (CNBC Indonesia) Dipetik 7 3, 2020, dari https://www.cnbcindonesia.com/tech/20200621121924-37-166911/membanggakanini-5-ventilator-corona-made-in-indonesia
Esteban, A., Ferguson, N. D., Meade, M. O., Frutos-Vivar, F., Apezteguia, C., Brochard, L. (2008). Evolution of mechanical ventilation in response to clinical research. American journal of respiratory and critical care medicine, 177, 170-177.
Fauroux B, L. F. (2005). Non-invasive mechanical ventilation:. Thorax, 60, 979-980.
Fogarty, M., Orr, J., Westenskow, D., Brewer, L., & Sakata, D. (2013). Electric Blower Based Portable Emergency Ventilator.
Fuchs, P., Obermeier, J., Kamysek, S., Degner, M., Nierath, H., Jürß, H., Schubert, J. K. (2017). Safety and applicability of a pre-stage public access ventilator for trained laypersons: a proof of principle study. BMC emergency medicine, 17, 1-8.
Garmendia, O., RodrıgÌ uez-Lazaro, M. A., Otero, J., Phan, P., Stoyanova, A., Dinh-Xuan, A. T., Farré, R. (2020). Low-cost, easy-to-build noninvasive pressure support ventilator for under-resourced regions: open source hardware description, performance and feasibility testing. European Respiratory Journal, 55.
HT-1890 Digital Manometer Manual, Dongguan Xintai Instrument Co., Ltd, Dongguan City, Guangdong Province, China 2021
Jürß, H., Degner, M., & Ewald, H. (2018). A new compact and low-cost respirator concept for one way usage. IFAC-PapersOnLine, 51, 367-372.
Kerechanin, C. W., Cytcgusm, P. N., Vincent, J. A., Smith, D. G., & Wenstrand, D. S. (2004). Development of field portable ventilator systems for domestic and military emergency medical response. John Hopkins Apl. Tech. Digest, 25.
Khan, Y., Fahad, H. M., Muin, S., & Gopalan, K. (2020). A low-cost, helmet-based, non-invasive ventilator for COVID-19. arXiv preprint arXiv:2005.11008.
Lucchini, A., Giani, M., Isgrò, S., Rona, R., & Foti, G. (2020). The “helmet bundle†in COVID-19 patients undergoing non invasive ventilation. Intensive & critical care nursing, 58, 102859.
McNeill, G. B., & Glossop, A. J. (2012). Clinical applications of non-invasive ventilation in critical care. Continuing Education in Anaesthesia, Critical Care & Pain, 12, 33-37.
MIT Emergency Ventilator Team. (2020, 04 15). MIT Emergency Ventilator. (MIT.EDU) Dipetik 9 1, 2020, dari https://e-vent.mit.edu/mechanical/
Najaf-Zadeh, A., & Leclerc, F. (2011). Noninvasive positive pressure ventilation for acute respiratory failure in children: a concise review. Annals of intensive care, 1, 1-10.
Nava, S. a. (2009). Non-invasive ventilation in acute respiratory failure. The Lancet, 374 (9685), 250-279.
Pauwels, R. A., & Rabe, K. F. (2004). Burden and clinical features of chronic obstructive pulmonary disease (COPD). The Lancet, 364, 613-620.
Powell, D. F. (2020). Ventilator Strategies. Dalam Operational and Medical Management of Explosive and Blast Incidents, (pp. 539-551). Springer.
Roussos, C., & Koutsoukou, A. (2003). Respiratory failure. European Respiratory Journal, 22, 3s--14s.
Sartelli, M. (2021). Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Dalam Infections in Surgery, (pp. 67-72). Springer.
Senior, R. M., & Anthonisen, N. R. (1998). Chronic obstructive pulmonary disease (COPD). American journal of respiratory and critical care medicine, 157, S139--S147.
Shahid, M. (2019). Prototyping of artificial respiration machine using AMBU bag compression. 2019 International Conference on Electronics, Information, and Communication (ICEIC), (pp. 1-6).
Viegi, G., Scognamiglio, A., Baldacci, S., Pistelli, F., & Carrozzi, L. (2001). Epidemiology of chronic obstructive pulmonary disease (COPD). Respiration, 68, 4-19.
Winck, J. C., & Ambrosino, N. (2020). COVID-19 pandemic and non invasive respiratory management: every Goliath needs a David. An evidence based evaluation of problems. Pulmonology, 26, 213-220.
Windisch, W., Weber-Carstens, S., Kluge, S., Rossaint, R., Welte, T., & Karagiannidis, C. (2020). Invasive and Non-Invasive Ventilation in Patients With COVID-19. Deutsches Ärzteblatt International, 117, 528.
Zhang, L., Valizadeh, H., Alipourfard, I., Bidares, R., Aghebati-Maleki, L., & Ahmadi, M. (2020). Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD: Journal of Chronic Obstructive Pulmonary Disease, 17, 333-342.
DOI: https://doi.org/10.26760/elkomika.v10i2.259
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.