Klasifikasi Sinyal EKG menggunakan Ciri Statistik dan Parameter Hjorth dengan SVM dan k-NN

INUNG WIJAYANTO, ANNISA HUMAIRANI, ACHMAD RIZAL, SUGONDO HADIYOSO

Sari


ABSTRAK

Sinyal elektrokardiogram (EKG) dapat dianalisis dengan memperhatikan bentuk, durasi, dan irama. Pada penelitian ini, dikembangkan sebuah metode ekstraksi ciri sinyal EKG dengan menggunakan parameter Hjorth dan ciri statistik. Kedua parameter tersebut diaplikasikan untuk mengekstrak ciri-ciri dari rekaman suara sinyal EKG. Terdapat tiga kondisi rekaman sinyal EKG yang menjadi masukan dari sistem, kondisi normal, atrial fibrillation (AF), dan congestive heart failure (CHF). Set ciri rekaman EKG yang didapatkan kemudian diklasifikasikan dengan menggunakan metode support vector machine (SVM) dan k-Nearest Neighbor (k-NN) untuk dibandingkan performansinya. Hasil pengujian menggunakan semua ciri sebagai prediktor menunjukkan bahwa usulan sistem mampu memberikan akurasi sebesar 100%. Sementara itu pada skenario reduksi ciri dimana hanya dua ciri yaitu skewness dan complexity, performansi sistem tidak berkurang. Komparasi dengan beberapa studi sebelumnya menunjukkan bahwa usulan metode lebih unggul dalam hal akurasi deteksi dan jumlah ciri yang digunakan.

Kata kunci: EKG, atrial fibrillation, congestive heart failure, Hjorth, SVM, k-NN

 

ABSTRACT

An electrocardiogram (ECG) signal can be analyzed by paying attention to its shape, duration, and rhythm. In this study, feature extraction for ECG signals is applied using the Hjorth parameter and statistical characteristics. These two parameters are applied to extract the characteristics of the ECG signal sound recording. There are three conditions of ECG signal recording that are used as input for the system. They are normal conditions, atrial fibrillation (AF), and congestive heart failure (CHF). The set of ECG recording features are classified using the support vector machine (SVM) and k-Nearest Neighbor (k-NN) methods. The test results using all features show that the proposed system can achieve 100% of accuracy. On the other hand, by reducing the feature using only skewness and complexity, the system’s performance is not reduced. Comparative studies with several previous studies show that the proposed method is superior in detection accuracy and the number of features used.

Keywords: ECG, atrial fibrillation, congestive heart failure, Hjorth, SVM, k-NN


Kata Kunci


EKG; atrial fibrillation; congestive heart failure; Hjorth; SVM; k-NN

Teks Lengkap:

PDF

Referensi


Abbaszadeh, B., Haddad, T. dan Yagoub, M. C. E. (2019). Probabilistic prediction of Epileptic Seizures using SVM. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 3442–3445. doi: 10.1109/EMBC.2019.8856286.

Abo-Zahhad, M., Ahmed, S. M. dan Abbas, S. N. (2014). Biometric authentication based on PCG and ECG signals: Present status and future directions. Signal, Image and Video Processing, 8(4), 739–751. doi: 10.1007/s11760-013-0593-4.

Agrawal, S. dan Gupta, A. (2013). Fractal and EMD based removal of baseline wander and powerline interference from ECG signals. Computers in Biology and Medicine, 43(11), 1889–1899. doi: 10.1016/j.compbiomed.2013.07.030.

Al-khatib, S. M., Lapointe, N. A. dan Chatterjee, R. (2013). Treatment of Atrial. Comparative Effectiveness Review, (119).

Alickovic, E., Kevric, J. dan Subasi, A. (2018). Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical Signal Processing and Control, 39, 94–102. doi: 10.1016/j.bspc.2017.07.022.

Bavkar, S., Iyer, B. dan Deosarkar, S. (2019). Detection of Alcoholism: An EEG Hybrid Features and Ensemble Subspace K-NN Based Approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer International Publishing, 161–168. doi: 10.1007/978-3-030-05366-6_13.

Chen, Y. dkk. (2013). ECG quality evaluation based on wavelet multi-scale entropy. Journal of Theoretical and Applied Information Technology, 48(1), 254–259.

Cortes, C. dan Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi: 10.1007/BF00994018.

Esmael, B., Fruhwirth, R. K. dan Thonhauser, G. (2013). A Statistical Features Based Approach for Operations Recognition. Drilling Time Series, 5, 4545.

Estananto, N. (2018). Klasifikasi Sinyal Elektrokardiogram Menggunakan Renyi Entropy. Jurnal Elektro dan Mesin Terapan, 4(2), 11–18. doi: 10.35143/elementer.v4i2.2139.

Gacek, A. dan Pedrycz, W. (2012). ECG Signal Processing, Classification,and Interpretation: A comprehensive framework of Computational Intelligence. Springer London.

Hadiyoso, S. dan Rizal, A. (2017). Electrocardiogram signal classification using higher-order complexity of hjorth descriptor. Advanced Science Letters, 23(5), 3972–3974. doi: 10.1166/asl.2017.8251.

Hagiwara, Y. dkk. (2018). Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review, Information Sciences, 467, 99–114. doi: 10.1016/j.ins.2018.07.063.

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310. doi: 10.1016/0013-4694(70)90143-4.

Hjorth, B. (1973). The physical significance of time domain descriptors in EEG analysis. Electroencephalography and Clinical Neurophysiology, 34(3), 321–325. doi: 10.1016/0013-4694(73)90260-5.

Joy, R., Acharya, U. R. dan Choo, L. (2013). ECG beat classification using PCA , LDA , ICA and Discrete Wavelet Transform. Biomedical Signal Processing and Control, 8(5), 437–448. doi: 10.1016/j.bspc.2013.01.005.

Kærgaard, K., Jensen, S. H. dan Puthusserypady, S. (2016). A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising. Biomedical Signal Processing and Control, 25, 178–187. doi: 10.1016/j.bspc.2015.11.012.

Luo, S. dan Johnston, P. (2010). A review of electrocardiogram filtering. Journal of Electrocardiology, 43(6), 486–496. doi: 10.1016/j.jelectrocard.2010.07.007.

Mercy Cleetus, H. M. dan Singh, D. (2014). Multifractal application on electrocardiogram’, Journal of Medical Engineering & Technology, 38(1), 55–61. doi: 10.3109/03091902.2013.849298.

Pal, S. dan Mitra, M. (2012). Empirical mode decomposition based ECG enhancement and QRS detection. Computers in Biology and Medicine, 42(1), pp. 83–92. doi: 10.1016/j.compbiomed.2011.10.012.

Patil, A., Deshmukh, C. dan Panat, A. R. (2016). Feature extraction of EEG for emotion recognition using Hjorth features and higher order crossings. 2016 Conference on Advances in Signal Processing (CASP). IEEE, (pp. 429–434). doi: 10.1109/CASP.2016.7746209.

Physionet.org (2010) ECG Database.

Pratiwi, D. A., Rizal, A. dan Magdalena, R. (2020).‘Aplikasi Stockwell Transforms dan K-Nearest Neighbor untuk Klasifikasi Sinyal Elektrokardiogram. AITI: Jurnal Teknologi Informasi, 17(1), 22–32.

Rizal, A. dan Suryani, V. (2008). Pengenalan Signal EKG Menggunakan Dekomposisi Paket Wavelet dan K-Means Clustering. Proceeding Seminar Nasional Aplikasi Teknologi Inofrmasi 2008(SNATI 2008), (pp. 5–8).

Rizal, A. dan Wijayanto, I. (2019). Classification of premature ventricular contraction based on ECG signal using multiorder rényi entropy. Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, (pp. 225–229). doi: 10.1109/ICAIIT.2019.8834590.

Ruiz-Padial, E. dan Ibáñez-Molina, A. J. (2018). Fractal dimension of EEG signals and heart dynamics in discrete emotional states. Biological Psychology, 137, 42–48. doi: 10.1016/j.biopsycho.2018.06.008.

Schuster, J. L. dkk. (2002). Living with Advanced Congestive Heart Failure : A Guide for Family Caregivers.

Suyanto. (2018). Machine Learning Tingkat Dasar dan Lanjut. Informatika Bandung.




DOI: https://doi.org/10.26760/elkomika.v10i1.132

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License