Desain ADC SAR 10-Bit Dua Kanal Simultan menggunakan Board FPGA Altera DE10
Abstract
ABSTRAK
Desain arsitektur ADC (Analog to Digital Converter) multi kanal simultan pada perangkat kontroller dapat mengurangi jumlah intruksi (task) program yang harus dijalankan oleh mikroprosessor dan dapat digunakan untuk membentuk pengukuran simultan. Paper ini memaparkan desain ADC SAR (Successive Approximation Register) 10-bit dua kanal simultan menggunakan Board FPGA (Field Programmable Gate Array) Altera DE10. FPGA dikonfigurasi untuk difungsikan sebagai sirkuit logika SAR dua kanal menggunakan bahasa VHDL (VHSIC-Very High Speed Integrated Circuit Hardware Description Language). Hasil pengujian menunjukkan kanal ADC_1 dan ADC_2 memiliki tingkat kesalahan rata-rata sebesar 1.05 % dan 0.90 %, tingkat akurasi sebesar 98.95 % dan 99.09 %, tingkat linearitas dengan koefisien korelasi sebesar 0.9999 dan 0.9999. Durasi waktu yang dibutuhkan dalam satu kali proses konversi ADC yaitu 104 μs. Didapatkan sampling-rate sebesar 9.6 KS/s. Daya yang dikonsumsi sebesar 842 mW. Kedua kanal ADC SAR yang telah dibuat mampu bekerja secara simultan.
Kata kunci: ADC, dua-kanal simultan, FPGA, SAR, VHDL
Â
ABSTRACT
Desing of simultaneous multi-channel ADC (Analog to Digital Converter) architecture on the controller device can reduce the number of program instructions (tasks) that must be executed by microprocessor and can be used to form simultaneous measurements. This paper describes design of simultaneous two channel 10-bit SAR (Successive Approximation Register) ADC by using Board FPGA (Field Programmable Gate Array) Altera DE10. FPGA is configured using VHDL (VHSIC-Very High Speed Integrated Circuit Hardware Description Language) language to function as two channels SAR logic circuit. Test results show that ADC_1 and ADC_2 channels have average error of 1.05% and 0.90%, accuracy of 98.95% and 99.09%, linearity level with correlation coefficient of 0.9999 and 0.9999. Time duration in one ADC conversion process is 104 μs. The sampling rate obtained is 9.6 KS/s. Power consumed is 842 mW. Design of two channels SAR ADC that has been made can work simultaneously.
Keywords: ADC, two-channels simultaneous, FPGA, SAR, VHDL
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abdel-Salam, M., Kamel, R., Sayed, K., & Khalaf, M. (2017). Design and implementation of a multifunction DSP-based-numerical relay. Electric Power Systems Research, 143, 32–43.
Chen, X., Xia, C., Wu, G., Zhang, F., Wang, J., Ji, H., Shi, W., Lu, T., & Chen, L. (2019). Lightning protection of 110 kV and 220 kV transformer neutral points in shenzhen power grid. 11th Asia-Pacific International Conference on Lightning, (pp. 1 – 4).
Daulatabad, S., Neema, V., Shah, A. P., & Singh, P. (2016). 8-Bit 250-MS/s ADC Based on SAR Architecture with Novel Comparator at 70 nm Technology Node. Procedia Computer Science, (pp. 589 – 596).
Heydarzadeh, S., Kadivarian, a, & Torkzadeh, P. (2012). Implemented 5-bit 125-MS/s Successive Approximation Register ADC on FPGA. International Journal of Electronics and Communication Engineering, 6(9), 394–397.
Kumar, M. (2020). Different Analog to Digital Converters Architectures. International Journal of Innovative Technology and Exploring Engineering, 9(4), 1256–1263.
Lai, W. C., Huang, J. F., & Hsieh, C. G. (2015). An 8-bit 20 MS/s successive approximation register analog-to-digital converter for wireless intelligent control and information processing. 5th International Conference on Intelligent Control and Information Processing, (pp. 115 – 117).
Liang, Y., Zhu, Z., & Ding, R. (2015). Calibration algorithm for 16-bit voltage-mode R-2R DAC. Microelectronics Journal, 46(10), 963–969.
Liao, G., & Zhu, J. (2010). Distribution line microprocessor relay protection system. International Conference on Intelligent Computation Technology and Automation, (pp. 142 – 145).
Maheshwari, V., Devulapalli, B. Das, & Saxena, A. K. (2014). FPGA-based digital overcurrent relay with concurrent sense-process- communicate cycles. International Journal of Electrical Power and Energy Systems, 55, 66–73.
Mitra, S., & Chattopadhyay, P. (2019). Design and implementation of flexible Numerical Overcurrent Relay on FPGA. International Journal of Electrical Power and Energy Systems, 104(May 2018), 797–806.
Subedi, D., & Lehtonen, M. (2019). Lightning overvoltages in electrical power system of a power plant. International Scientific Conference on Electric Power Engineering, (pp. 1 – 4).
Wardana, Kusuma. (2015, November 20). Penggunaan Detak (Clock) dan Prescaler Pada Proses Sampling. Retrieved from www.tutorkeren.com.
Yanagihashi, Y., Nakashima, M., Sumida, Y., & Hong, L. (2011). Development of mediumvoltage distribution relay with precision current measurement and multi-lingual capability. International Conference on Advanced Power System Automation and Protection, (pp. 604 – 608).
Zet, C., & Fosalau, C. (2019). Generating Programmable Analog Signals using FPGA. International Conference on Electromechanical and Energy Systems, (pp. 1 – 4).
Zhang, G., Zhao, T., Zhang, H., & Liang, F. (2018). A 16-BIT 200KS/S Multi-channel SAR ADC in 55nm CMOS. IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, (pp. 998 – 1002).
DOI: https://doi.org/10.26760/elkomika.v10i1.16
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.