Strategi Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) pada Kendali Motor Induksi 3 Fase Metode Vektor-Tidak Langsung

HANIF HASYIER FAKHRUDDIN, HANDRI TOAR, ERA PURWANTO, HARY OKTAVIANTO, GAMAR BASUKI, RADEN AKBAR NUR APRIYANTO, ABDILLAH AZIZ MUNTASHIR

Abstract


ABSTRAK

Kendali vektor merupakan solusi terbaik dalam kendali motor induksi untuk meningkatkan karakter dinamis dan efisiensinya. Pada penelitian ini, sebuah kendali kecepatan PID dipadukan dengan Adaptive Neuro Fuzzy Inference System (ANFIS) untuk meningkatkan keandalan pada berbagai kecepatan acuan. Metode cerdas Particle Swarm Optimization (PSO) digunakan untuk optimasi dataset ANFIS. Pengujian keandalan dilakukan dengan membandingkan PID konvensional dengan PID-ANFIS pada motor induksi 3 fase berdaya 2HP. Validasi penelitian dilakukan melalui simulasi di platform LabView. PID-ANFIS membuktikan hasil yang jauh lebih baik dari kendali PID konvensional pada berbagai kecepatan acuan. Pemilihan rise time tercepat sebagai fungsi fitness menghasilkan kendali yang memiliki dead time dan rise time 1.5x lebih cepat. PID-ANFIS berhasil menghilangkan undershoot dan osilasi steady state ketika uji kecepatan tinggi.

Kata kunci: Kendali Vektor, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView

 

ABSTRACT

Vector control is the best solution in induction motor control to enhance its dynamic character and efficiency. In this research, a PID speed controller is combined with the Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance reliability at various reference speeds. The intelligent method Particle Swarm Optimization (PSO) is used to optimize the ANFIS dataset. Reliability testing is done by comparing conventional PID with PID-ANFIS on a 2HP 3-phase induction motor. The research validation was carried out through a simulation on the LabView platform. The PID-ANFIS proved significantly better results than conventional PID control at a wide range of reference speeds. Selection of the fastest rise time as a fitness function results in a control that has a dead time and a rise time of 1.5x faster. PID-ANFIS successfully negates undershoot and steadystate oscillations during high-speed tests.

Keywords: Vector Control, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView


Keywords


Kendali Vektor; Adaptive Neuro Fuzzy Inference System; Particle Swarm Optimization; LabView

References


Chao, C. T., Sutarna, N., Chiou, J. S., & Wang, C. J. (2019). An optimal fuzzy PID controller design based on conventional PID control and nonlinear factors. Applied Sciences (Switzerland), 9(6), 1224-1242.

Fakhruddin, H. H., Toar, H., Purwanto, E., Oktavianto, H., Apriyanto, R. A. N., & Aditya, A. W. (2020). Kendali Kecepatan Motor Induksi 3 Fase Berbasis Particle Swarm Optimization (PSO). ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(3), 477-492.

Ferdiansyah, I., Purwanto, E., & Windarko, N. A. (2016). Fuzzy Gain Scheduling of PID (FGSPID) for Speed Control Three Phase Induction Motor Based on Indirect Field Oriented Control (IFOC). EMITTER International Journal of Engineering Technology , 4(2), 237-256.

Hannan, M. A., Ali, J. A., Mohamed, A., & Hussain, A. (2018). Optimization techniques to enhance the performance of induction motor drives: A review. Renewable and Sustainable Energy Reviews, 81, 1611–1626.

Hussain, S., & Bazaz, M. A. (2014). ANFIS implementation on a three phase vector controlled induction motor with efficiency optimisation. 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications, CSCITA 2014, (pp. 391-396).

Menghal, P. M., & Laxmi, A. J. (2016). Fuzzy Based Real Time Control of Induction Motor Drive. Procedia Computer Science, 85, 228–235.

Qudsi, O. A., Rosalina, I. I., & Yanaratri, D. S. (2018). V / f SPWM Inverter for Single-phase Induction Motor Contrller Using Adaptive Neuro-Fuzzy Inference System. 2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), 158–163.

Rajab, S. (2019). Handling interpretability issues in ANFIS using rule base simplification and constrained learning. Fuzzy Sets and Systems, 368, 36–58.

Ridwan, R., Purwanto, E., Oktavianto, H., Rusli, M. R., & Toar, H. (2019). Desain Kontrol Kecepatan Motor Induksi Tiga Fasa Menggunakan Fuzzy Pid Berbasis Idirect Field Oriented Control. Jurnal Integrasi, 11(2), 146–155.

Rind, S. J., Ren, Y., Hu, Y., Wang, J., & Jiang, L. (2017). Configurations and Control of Traction Motors for Electric Vehicles : A Review. 3(3), 13–14.

Salim, & Ohri, J. (2015). Fuzzy based PID controller for speed control of D.C. motor using LabVIEW. WSEAS Transactions on Systems and Control, 10, 154–159.

Sanjeevikumar, P., Daya, J. L. F., Wheeler, P., Blaabjerg, F., Fedák, V., & Ojo, J. O. (2015). Wavelet transform with fuzzy tuning based indirect field oriented speed control of threephase induction motor drive. 2015 International Conference on Electrical Drives and Power Electronics, EDPE 2015 - Proceedings, September, (pp. 111–116).

Sathishkumar, H., & Parthasarathy, S. S. (2017). A novel neuro-fuzzy controller for vector controlled induction motor drive. Energy Procedia, 138, 698–703.

Simon, R., & Geetha, A. (2013). Comparison on the Performance of Induction Motor Control Using Fuzzy and ANFIS Controllers. ICECCN, (pp. 491–495).

Toar, H., Purwanto, E., Oktavianto, H., Ridwan, R., & Rusli, M. R. (2020). Penala Parameter Pid Otomatis Pada Pengatur Kecepatan Motor Induksi Tiga Fasa. Jurnal Integrasi, 12(1), 1–12.




DOI: https://doi.org/10.26760/elkomika.v9i4.786

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License