Analisis Faktor Kapasitas Pembangkit Listrik Hibrida PLTB dengan PLTD di Pulau Terpencil: Studi Kasus Elat Pulau Serau Maluku
Abstract
ABSTRAK
Rasio elektrifikasi di Indonesia belum mencapai 100%, penyebabnya antara lain masalah lokasi di daerah terpencil atau kepulauan dan mahalnya biaya operasi PLTD. Salah satu solusi adalah membangkitkan listrik berbasis energi terbarukan setempat. Tahap awal pemanfaatan energi terbarukan perlu dihitung faktor kapasitas (CF). Tujuan penelitian ini menganalisis CF untuk PLTB dengan metode perhitungan analitik berbasis potensi energi angin, spesifikasi teknologi PLTB dan PLTD, profil beban dan energi listrik yang dapat diproduksi untuk pengembangan sistem hibrida dengan mengambil kasus di Elat Pulau Serau Maluku. Hasil perhitungan CF untuk 5 teknologi PLTB yang berbeda dengan variasi ketinggian di Elat telah diverifikasi dengan simulasi menggunakan perangkat lunak HOMER dengan nilai rerata galat -0,030. Semakin tinggi PLTB, nilai CF semakin besar dengan konstanta 0,0030.
Kata kunci: elektrifikasi, faktor kapasitas, PLTB, PLTD, sistem hibrida
Â
ABSTRACT
The electrification ratio in Indonesia has not reached 100%, the causes include problems with the location in remote areas or islands and the high operating costs of diesel power plant (DPP). One solution is to generate electricity based on local renewable energy. The initial stage of utilizing renewable energy needs to calculate the capacity factor (CF). The purpose of this research is to analyze CF for wind turbine generator (WTG) with analytical calculation methods based on wind energy potential, technology specifications of WTG and DPP, load profiles and electrical energy that can be produced for hybrid system development by taking the case in Elat Serau Island, Maluku. The results of CF calculations for 5 different WTG technologies with altitude variations in Elat have been verified by simulation using HOMER software with a mean error value of -0.030. The higher the WTG, the greater the CF value with a constant of 0.0030.
Keywords: electrification, capacity factor, diesel power plant, wind turbine generator, hybrid system
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Al-Quraan, A., & Alrawashdeh, H. (2018). Correlated Capacity Factor Strategy for Yield Maximization of Wind Turbine Energy. 5th International Conference on Renewable Energy: Generation and Application, (pp. 264–267).
Andrea, A.E., Miguel F., Eisman J., et.al. (2019). Lessons Learned from Rural Electrification Experiences with Third Generation Solar Home Systems in Latin America: Case Studies in Peru, Mexico, and Bolivia. Sustainability Journal, 11(12), 1-24.
Benevit, M. G., Silva, J. S., Gewehr, A. G., & Beluco, A. (2016). Subtle Influence of the Weibull Shape Parameter on Homer Optimization Space of a Wind Diesel Hybrid Gen Set for Use in Southern Brazil. Journal of Power and Energy Engineering, 4(8), 38–48.
Boccard, N. (2009). Capacity Factor of Wind Power: Realized Values vs. Estimates. SSRN Energy Policy, 37 (7), 2679-2688.
Bokde, N. (2018). Wind Turbine Power Curves Based on the Weibull Cumulative Distribution Function, Applied Sciences, 8(9), 1–18.
Chang, T., Liu, F., Ko, H., Cheng, S., & Sun, L. (2014). Comparative analysis on power curvemodels of wind turbine generator in estimating capacity factor. Energy, 73 (7), 88–95.
Direktorat Jenderal Ketenagalistrikan. (2019). RUPTL PLN 2019-2028. Retrieved from https://gatrik.esdm.go.id.
Ditkovich, Y., & Kuperman, A. (2014). Comparison of Three Methods for Wind Turbine Capacity Factor Estimation. The Scientific World Journal, 2014(1), 1-7.
Ditkovich, Y., Kuperman, A., Yahalom, A., & Byalsky, M. (2012). A generalized approach to estimating capacity factor of fixed speed wind turbines. IEEE Transactions on Sustainable Energy, 3(3), 607–608.
Diyoke, C. (2019). A New Approximate Capacity Factor Method for Matching Wind Turbines to a Site :Case Study of Humber Region, UK. International Journal of Energy and Environmental Engineering,10(4), 451–462.
Gharibeh, H. F., Khiavi, L. M., Farrokhifar, M., Alahyari, A., & Pozo, D. (2019). Capacity value of variable-speed wind turbines. IEEE Milan PowerTech, (pp 1–5).
EBTKE. (2019). Kerja Sama Strategis RI-Jerman: Majukan Energi Terbarukan dengan PelibatanSwasta. Retrieved from http://ebtke.esdm.go.id.
Kementerian Energi Dan Sumber Daya Mineral Republik Indonesia. (2019). Wujudkan 100% Rasio Elektrifikasi, Kementerian ESDM akan Manfaatkan Tabung Listrik. Retrieved from https://www.esdm.go.id.
Menezes, D., Mendes, M., Almeida, J. A., & Farinha, T. (2020). Wind Farm and Resource Datasets: A Comprehensive Survey and Overview. Energies, 13(18), 1–24.
Nemes, C., & Munteanu, F. (2011). The Wind Energy System Performance Overview: Capacity Factor vs Technical Efficiency. International Journal of Mathematical Models and Methods in Applied Sciences, 5 (1), 159–166.
Plugia, G., Moroni , M. , Fagnani, M., Comodi, G. (2017). A design approach of off-grid hybrid electric microgrids inisolated villages: a case study in Uganda. The 8th International Conference on Applied Energy, (pp. 3089 – 3094).
PwC global power & utilities (2016). Electricity beyond the grid: Accelerating access to sustainable power for all. https://www.pwc.com/gx/en/energy-utilitiesmining/pdf/electricity-beyond-grid.pdf
Sambodo T.S. (2015). Rural Electrification Program in Indonesia: Comparing SEHEN and SHS Program. Economics and Finance in Indonesia 61(2), 107-119.
Song, D., Yang, Y., Zheng, S., Tang, W., Yang, J., Su, M., Yang, X., & Joo, Y. H. (2019). Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density. Energy, 183(9), 1049–1060.
Subhes C. Bhattacharyya, Debajit, P. (2016). Mini-grid based off-grid electrification to enhance electricity access in developing countries: What policies may be required?, Energy Policy 94(6), 166-178.
Walia, S., & Sandhu, K. S. (2019). Capacity factor of wind turbine system based on different power curves and Weibull distribution parameters. The 3rd International Conference on Computing Methodologies and Communication, (pp. 1135–1138).
Worldometer. (2020). Current World Population. Retrieved from https://www.worldometers.info/world-population/
DOI: https://doi.org/10.26760/elkomika.v9i4.746
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.