Optimasi Kombinasi Biaya Bahan Bakar dan Emisi Pembangkit Energi Listrik menggunakan Teknik Reduksi Tempat Kedudukan

JANGKUNG RAHARJO

Abstract


ABSTRAK

Dalam pengoperasian pembangkit energi listrik bukan saja untuk mendapatkan biaya yang minimal, namun juga meminimalkan emisi yang dihasilkan atau dikenal dengan Combined Economic Emission Dispatch (CEED), karena emisi merupakan bagian dari permasalahan energi. Makalah ini mengusulkan teknik reduksi tempat kedudukan untuk memecahkan masalah CEED. Prinsip dasar dari teknik ini adalah menebarkan sejumlah kandidat pada tempat kedudukan, S0 yang dibentuk dari limit daya generator, dan ditentukan sebuah kandidat terbaik. S0 diperkecil dan proses diulangi hingga didapatkan tempat kedudukan yang sangat kecil dimana kandidat terbaiknya dapat dianggap sebagai titik optimal. Teknik ini lebih akurat dibandingkan dengan metoda lain seperti Gradient Method (GM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), JAYA Algorithm dan Whale Optimization Algorithm (WOA). Hasilnya memberikan penghematan biaya tanpa melibatkan emisi masing-masing terhadap GM, ACO, PSO, WOA dan JAYA sebesar 9,24%, 3,91%, 0,56%, 0,47% dan 0,21%, serta bila melibatkan emisi sebesar 21,28%, 16,09%, 5,52%, 5,31% dan 5,04%.

Kata kunci: CEED, reduksi tempat kedudukan, penghematan biaya, optimal, akurat.

 

ABSTRACT

In an operating, generator units not only to get minimal costs but also to consider the emissions produced, known as the Combined Economic Emission Dispatch (CEED), because emission is part of the energy problem. This paper proposes a feasible area reduction technique for solving CEED problems. The basic principle of this technique is to spread number of candidates on a feasible area, S0 which is formed by generator limits from n generator units and the best candidate is determined. S0 is reduced and the process is repeated until a very small area is found, where the best candidate can be considered the solution. This technique is more accurate than other methods such as GM, ACO, PSO, JAYA Algorithm and WOA. The result provides cost savings without involving emission of GM, ACO, PSO, WOA and JAYA of 9.24%, 3.91%, 0.56%, 0.47% and 0.21% respectively, as well as when it involves emissions amounted to 21.28%, 16.09%, 5.52%, 5.31% and 5.04% respectively.

Keywords: CEED, feasible area reduction, cost saving, optimal, accurate


Keywords


CEED; reduksi tempat kedudukan; penghematan biaya; optimal; akurat

References


Adhirai, S., Mahapatra, R. P., & Singh, P. (2018). The whale optimization algorithm and its implementation in MATLAB. International Journal of Computer and Information Engineering, 12(10), 815-822.

Apostolopoulos, T., & Vlachos, A. (2010). Application of the firefly algorithm for solving the economic emissions load dispatch problem. International journal of combinatorics, 2011, 1-23. doi:https://doi.org/10.1155/2011/523806

Bhattacharya, A., & Chattopadhyay, P. K. (2011). Solving economic emission load dispatch problems using hybrid differential evolution. Applied Soft Computing, 11(2), 2526- 2537. doi:https://doi.org/10.1016/j.asoc.2010.09.008

Bhesdadiya, R. H., Pandya, M. H., Trivedi, I. N., Jangir, N., Jangir, P., & Kumar, A. (2016). Price penalty factors based approach for combined economic emission dispatch problem solution using Dragonfly Algorithm. International Conference (pp. 436-441). Nagercoil, India: IEEE. doi:https://doi.org/10.1109/ICEETS.2016.7583794

Bhoye, M., Pandya, M. H., Valvi, S., Trivedi, I. N., Jangir, P., & Parmar, S. A. (2016). An Emission Constraint Environment Dispatch Problem Solution with Microgrid using JAYA Algorithm. International Conference on Energy Efficient Technologies for Sustainability (ICEETS) (pp. 497-502). Nagercoil, India: IEEE. doi:https://doi.org/10.1109/ICEETS.2016.7583805

Dey, B., Roy, S. K., & Bhattacharyya, B. (2019). Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms. Engineering Science and Technology. an International Journal, 22(1), 55-66. doi:https://doi.org/10.1016/j.jestch.2018.10.001

Dhifaoui, C., Marouani, I., & Abdallah, H. H. (2020). MOALO Algorithm applied to Dynamic Economic Environmental Dispatch including renewable energy. IJCSNS, 20(6), 36-47.

Faseela, C. K., & Vennila, H. (2018). Economic and Emission Dispatch using Whale Optimization Algorithm (WOA). International Journal of Electrical and Computer Engineering, 8(3), pp. 1297-1304. doi:https://doi.org/10.11591/ijece.v8i3

Gonidakis, D., & Vlachos, A. (2015). Bat algorithm approaches for solving the combined economic and emission dispatch problem. International Journal of Computer Applications, 124(1), 1-7. doi:https://doi.org/10.5120/ijca2015905288.

Güvenç, U., Sönmez, Y. U., Duman, S., & Yörükeren, N. (2012). Combined economic and emission dispatch solution using gravitational search algorithm. Scientia Iranica, 19(6), 1754-1762. doi:https://doi.org/10.1016/j.scient.2012.02.030

Hardiansyah, Junaidi, & Yandri. (2016). Combined Economic Emission Dispatch Solution Using Simulated Annealing Algorithm. IOSR Journal of Electrical and Electronics Engineering, 11(5), 141-148. doi:https://doi.org/10.9790/1676-110502141148

Jiang, S., Zhang, C., Wu, W., & Chen, S. (2019). Combined economic and emission dispatch problem of wind-thermal power system using gravitational particle swarm optimization algorithm. Mathematical Problems in Engineering, 2019, 1-19. doi:https://doi.org/10.1155/2019/5679361

Kar, S. R., Dash, P. D., & Sanyal, S. K. (2019). Application of Whale Optimization Algorithm for Environment Constrained Economic Dispatch of Fixed Head Hydro-Wind-Thermal Power System. International Journal of Engineering and Advanced Technology, 9(1), 5608-5616. doi:https://doi.org/10.35940/ijeat.A2261.109119

Li, M., Du, W., & Nian, F. (2014). An Adaptive Particle Swarm Optimization Algorithm Based on Directed Wighted Complex Network. Mathematical Problems in Engineering, 1-7. doi:http://dx.doi.org/10.1155/2014/434972

Maydilasari, M. P., Zuliari, E. A., & Wati, T. (2020). Economic Emission Dispatch Mempertimbangkan Valve-Point Effect Menggunakan Particle Swarm Optimization (PSO). Prosiding Seminar Nasional Sains dan Teknologi Terapan (pp. 1). Surabaya: Institut Teknologi Adhi Tama.

Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34. doi:https://doi.org/10.5267/j.ijiec.2015.8.004

Ryu, H. S., & Kim, M. K. (2020). Combined Economic Emission Dispatch with Environment-Based Demand Response Using WU-ABC Algorithm. Energies, 13(23), 6450. doi:https://doi.org/10.3390/en13236450

Trivedi, I. N., Bhoye, M., Bhesdadiya, R. H., Jangir, P., Jangir, N., & Kumar, A. (2016). An emission constraint environment dispatch problem solution with microgrid using Whale Optimization Algorithm. 2016 National Power Systems Conference (NPSC) (pp. 1-6). Bhubaneswar: IEEE. doi:https://doi.org/10.1109/NPSC.2016.7858899

Wood, A. J., Wollenberg, B. F., & Sheblé, G. B. (2013). Power generation, Operation, and Control. John Wiley & Sons.




DOI: https://doi.org/10.26760/elkomika.v9i2.318

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License