Bi-Directional Data Communication using Visible Light Technology for Underwater Environment
Sari
ABSTRAK
Pengembangan VLC (Visible Light Communication) dapat diimplementasikan ke dalam air. Pada penelitian ini dirancang sistem komunikasi menggunakan cahaya tampak untuk komunikasi dua arah di lingkungan bawah air. Sistem dirancang untuk mengirimkan sinyal digital dengan pengukuran jarak menggunakan filter warna. Terdapat dua link di bagian pemancar dan penerima. Untuk membedakan kedua link tersebut, data dari generator sinyal 3 kHz akan diaplikasikan pada link 1 dan data dari pembangkit sinyal 4 kHz akan diaplikasikan pada link 2. Berdasarkan hasil pengujian, sistem menerima data secara optimal pada link 1 dengan jarak 50 cm dengan tegangan keluaran (Vout) 4,32 Vpp, dan frekuensi keluaran (fout) 3,121 kHz. Hasil pengukuran pada link 2 didapatkan tegangan keluaran sebesar 5,28 Vpp dan frekuensi keluaran (fout) sebesar 4,021 kHz. Pengukuran pada link 1 dengan filter warna biru didapatkan tegangan rata-rata sebesar 5,46 Vpp dan frekuensi keluaran (fout)) sebesar 3,136 kHz. Sedangkan pengukuran link 2 dengan filter warna merah didapatkan tegangan rata-rata 5,11 Vpp dan fout 4,054 kHz.
Kata kunci: color filter, bidirectional, data, UVLC
Â
ABSTRACT
The development of VLC (Visible Light Communication) can be implemented into underwater. In this research, we design a visible light communication system for two-way communication in the underwater environment. The system is designed to transmit digital signals with a distance measurement using a color filter. There are two links in transmitter and receiver part. To distinguish between those two links, data from the signal generator of 3 kHz will be applied on link 1 and data from the the signal generator of 4 kHz will be applied on link 2. The distance measurement system can receive the data optimally on link 1 with the distance of 50 cm, an output voltage (Vout) of 4.32 Vpp, and output frequency (fout) of 3.121 kHz. The result measurement on link 2 obtains an output voltage of 5.28 Vpp and output frequency of 4.021 kHz. The measurement on link 1 which applied the blue color filter obtains the average voltage of 5.46 Vpp and the output frequency (fout) of 3.136 kHz, while on link 2 which applied the red color filter obtains an average voltage of 5.11 Vpp and fout of 4.054 kHz.
Keyword: color filter, bidirectional, data, UVLC
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
Chen, D., Wang, Y., Jin, J., Lu, H., Wang, J. (2020) An experimental study of NOMA in underwater visible light communication system. Optics Communications, 475.
Darlis, A. R., Widura, A., Andrian, M.R. (2018). Bidirectional Underwater Visible Light Communication. International Journal of Electrical and Computer Engineering (IJECE), 8(6), 5203-5214.
Elamassie, M., Al-Nahhal, M., Kizilirmak, R.C., Uysal, M. (2019). Transmit Laser Selection for Underwater Visible Light Communication Systems. 2019 IEEE 30th Annual
International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC). DOI: 10.1109/PIMRC.2019.8904100.
Elamassie, M., Miramirkhani, F., Uysal, M. (2018). Performance Characterization of underwater visible light communication. IEEE Transactions on Communications, 67(1), 543-552.
Elamassie, M., Uysal, M. (2018). Performance Characterization of vertical underwater VLC links in the presence of turbulence. 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). DOI: 10.1109/CSNDSP.2018.8471888. September 27th 2018. Publisher: IEEE
He, Y. J., Ding. L., Gory, Y., Wang, Y. (2013). Real-time Audio & Video Transmission Based on Visible Light Communication. Optics and Photonics Journal, 153-157.
Huang, A., Tao, L., Niu, Y. (2018). Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation. Optics Communications, 412.
Husaeni, D. F., Darlis, A. R., Lidyawati, L., & Nataliana, D. (2016). Implementasi Visible LIght Communication (VLC) pada Sistem Komunikasi. Elkomika, 1(1), 13-25.
Komine, T., Nakagawa, M. (2014). Fundamental Analaysis for Visible Light Communication using LED Lights. IEEE Transaction on Consumer Electronics, 100-107.
Medina, C., Zambrano, M, Navarro, K. (2015). LED Based Visible Light Communication Technology, Applications and Chanllenges a Survey. IJAET, DOI: 10.7323/ijaet/V8_iss4.
Pathak, P., Feng, X., Hu, P. Mohapatra. (2015). Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges in IEEE Communications Surveys & Tutorials, 17(4), 2047-2077.
Sharifzadeh, M., Ahmadirad, M. (2018). Performance Analysis of underwater wireless optical communication systems over a wide range of optical turbulence. Optics Communications, 427.
Wang, C., Yu, H. Y., Zhu, Y. J. (2016). Underwater Visible Light Communication a Long Distance Underwater Light Communication System with Single Photon Avalanche Diode. IEEE Photonics Journal, 8(5), 1-11. DOI: 10.1109/JPHUT.2016.2602330.
Wang, F., Liu Y., Jiang, F., Chi, N. (2018). High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception. Optics Communications, 425.
Zhao, Y., Zou, P., Chi, N. (2020). 3.2 Gbps underwater visible light communication system utilizing dual-branch multi-layer perceptron based post-equalizer. Optics Coomunication, 460.
DOI: https://doi.org/10.26760/elkomika.v9i1.217
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.