An Energy Balance Model for a Small Educational Thermal Device

LISA KRISTIANA, AURALIUS MANURUNG

Abstract


ABSTRAK

Pada paper ini, kami membahas mengenai suatu divais yang telah dikembangkan untuk menunjang proses belajar di tingkat universitas. Divais yang kami kembangkan dilengkapi dengan sebuah pemanas dan sebuah kipas. Kami menggunakan metode kesetimbangan energi untuk memodelkan divais tersebut, dimana nilai dari kapasitas panas, emissivity, dan koefisien transfer panas dihitung. Selain itu, kami juga mencari hubungan antara kecepatan putar kipas dengan perubahan koefisien transfer panas dengan menggunakan metode optimisasi. Hasil yang diperoleh menunjukkan bahwa model kesetimbangan energi dapat menghampiri keluaran sebenarnya dengan sangat baik dengan absolute error sebesar 9ºC. Pada tahap validasi, niliai absolute error yang diperoleh menjadi lebih tinggi, yakni 16ºC dan terjadi pada temperature tinggi. Sementara itu, kecepatan putar kipas berpengaruh secara linear terhadap perubahan koefisien transfer panas.

Kata kunci: Sistem thermal, MISO, kesetimbangan energi, pemodelan

 

ABSTRACT

This paper presents a small thermal device that has been developed for collegelevel teaching purposes. The developed device is equipped with one heater and one fan. An energy balance model is used to model the device and the parameters are calculated accordingly, such as heat capacity, emissivity and heat transfer coefficient. Additionally, we also quantify how the speed of the fan affects the heat transfer coefficient by using optimization methods to identify all the unknown parameters of the model. The results show that an energy balance model, which includes convection and radiation, can fit the dynamics of the device very well with a maximum absolute error of about 9ºC. However, during the validation process, the derived model gives a larger maximum absolute error of about 16ºC, which happens at high temperatures. As for the fan, we find that the speed of fan and the resulting heat transfer coefficient are likely to be linearly related.

Keywords: Thermal device, MISO, energy balance equation, system modeling


Keywords


Sistem thermal; MISO; kesetimbangan energi; pemodelan

Full Text:

PDF

References


Adams, N. E. (2015). Bloom’s taxonomy of cognitive learning objectives. Journal of the Medical Library Association, 103(3), 152–153.

Barbosa, R. S. (2020). Educational platform for modeling and control. 2020 XIV Technologies Applied to Electronics Teaching Conference, (pp. 1-9).

Cui, W., Tan, W., Li, D., & Wang, Y. (2020). Tuning of Linear Active Disturbance Rejection Controllers Based On Step Response Curves. IEEE Access, 8, 180869–180882.

Durfee, W., Li, P., & Waletzko, D. (2004). Take-home lab kits for system dynamics and controls courses. Proceedings of the American Control Conference, (pp. 1319-1322).

Hamze, S., Witrant, E., Bresch-Pietri, D., & Fauvel, C. (2018). Estimating Heat-Transport and Time-Delays in a Heat Exchanger. 2018 IEEE Conference on Control Technology and Applications, (pp. 1514-1519).

Jouaneh, M. K., & Palm, W. J. (2010). System dynamics experimentation at home. ASME International Mechanical Engineering Congress and Exposition, (pp. 413–420).

Knuiman, J. T., Barneveld, P. A., & Besseling, N. A. M. (2012). On the relation between the fundamental equation of thermodynamics and the energy balance equation in the context of closed and open systems. Journal of Chemical Education, 89(8), 968–972.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1), 112–147.

Manurung, A. (2020). Universitas Pertamina’s Temperature Control Device. Retrieved from https://github.com/auralius/up_temperature_control_device.

McLaughlan, R., & Lodge, J. M. (2019). Facilitating epistemic fluency through design thinking: a strategy for the broader application of studio pedagogy within higher education. Teaching in Higher Education, 24(1), 81–97.

Moosvi, F., Reinsberg, S. A., & Rieger, G. W. (2019). Can a hands-on physics project lab be delivered effectively as a distance lab? International Review of Research in Open and Distance Learning, 20(1), 22–42.

Park, J., Martin, R. A., Kelly, J. D., & Hedengren, J. D. (2020). Benchmark temperature microcontroller for process dynamics and control. Computers and Chemical Engineering, 135, 106736.

Roques, L., Chekroun, M. D., Cristofol, M., Soubeyrand, S., & Ghil, M. (2014). Parameter estimation for energy balance models with memory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2169), 20140349.

Sokoloff, D. R., & Thornton, R. K. (1997). Using interactive lecture demonstrations to create an active learning environment. The Physics Teacher, 35(6), 340–347.

Tran, L. Q., Radcliffe, P. J., & Wang, L. (2019). A low budget take-home control engineering laboratory for undergraduate. International Journal of Electrical Engineering Education.

Zhu, J., Liu, R., Liu, Q., Zheng, T., & Zhang, Z. (2019). Engineering Students’ Epistemological Thinking in the Context of Project-Based Learning. IEEE Transactions on Education, 62(3), 188–198.




DOI: https://doi.org/10.26760/elkomika.v9i2.333

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License