Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning
Sari
ABSTRAK
Parasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.
Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis
Â
ABSTRACT
Plasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.
Keywords: parasites, malaria, convolutional neural network, microscopic image
Kata Kunci
Teks Lengkap:
PDFReferensi
Albawi, S., & Mohammed, T. A. (2017). Understanding of a Convolutional Neural Network. International Conference on Engineering and Technology (ICET), (April 2018), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186
Chanda, P., Kapata, N., & Zumla, A. (2020). International Journal of Infectious Diseases COVID-19 and malaria : A symptom screening challenge for malaria endemic countries. International Journal of Infectious Diseases, 94, 151–153. https://doi.org/10.1016/j.ijid.2020.04.007
Hariyani, Y. S., Hadiyoso, S., & Siadari, T. S. (2020). Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network. Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(2), 443–453.
Indolia, S., Kumar, A., Mishra, S. P., & Asopa, P. (2018). ScienceDirect Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science, 132, 679–688. https://doi.org/10.1016/j.procs.2018.05.069
Kemenkes, P. D. D. I. K. K. R. (2016). InfoDatin Malaria2016.
Kim, P. (2017). MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence 1st ed (1 ed.; S. Anglin, M. Moodie, M. Powers, & K. Endsley, ed.). https://doi.org/10.1007/978-1-4842-2845-6
Masud, M., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., Muhammad, G., & Hossain, M. S. (2020). Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application. Wireless Communications and Mobile Computing, 2020, 1–15.
Mbanefo, A., & Kumar, N. (2020). Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Journal of Tropical Medicine and Infectious Disease, 5, 1–15.
Medicine, U. S. N. L. of. (2017). Malaria Cell Images Dataset. Diambil 2 September 2020, dari https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria
Ouedraogo, M., Kangoye, D. T., Samadoulougou, S., Rouamba, T., Donne, P., & Samadoulougou, F. K. (2020). Malaria Case Fatality Rate among Children under Five in Burkina Faso : An Assessment of the Spatiotemporal Trends Following the Implementation of Control Programs. International Journal of Environment Research and Public Health, 17(6), 1–22.
Penas, K. E. delas, Rivera, P. T., & Naval, P. C. (2017). Malaria Parasite Detection and Species Identification on Thin Blood Smears using a Convolutional Neural Network. ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), 1–6. https://doi.org/10.1109/CHASE.2017.51
Qanbar, M. M., & Tasdemir, S. (2019). Detection of Malaria Diseases with Residual Attention Network. International Journal of Intelligent Systems and Applications in Engineering, 7(4), 238–244. https://doi.org/10.1039/b000000x
Santra, A. K., & Christy, C. J. (2012). Genetic Algorithm and Confusion Matrix for Document Clustering. International Journal of Computer Science Issues, 9(1), 322–328.
Shah, D., Kawale, K., Shah, M., Randive, S., & Mapari, R. (2020). Malaria Parasite Detection Using Deep Learning. International Conference on Intelligent Computing and Control Systems (ICICCS 2020), (pp. 984–988).
Talapko, J., Škrlec, I., Alebic, T., Jukic, M., & Vcev, A. (2019). Malaria : The Past and the Present. Journal Microorganisms, 7(6), 1–17.
WHO, W. H. O. (2019). World Malaria Report 2019. Diambil 8 September 2020, dari https://www.who.int/publications/i/item/world-malaria-report-2019
Zein, A. (2019). Pendeteksian Penyakit Malaria Menggunakan Medical Images Analisis Dengan Deep Learning Python. Sainstech, 29(1), 48–53. Diambil dari https://ejournal.istn.ac.id/index.php/sainstech/article/view/319
DOI: https://doi.org/10.26760/elkomika.v9i2.306
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.