Deteksi Limfosit Plasma Biru pada Citra Darah untuk Diagnosa Pendukung pada Kasus Demam Berdarah Dengue

SUCI AULIA, SUGONDO HADIYOSO

Abstract


ABSTRAK

Demam Berdarah Dengue (DBD) adalah salah satu penyakit mematikan yang disebabkan oleh virus dengue sehingga diagnosis dini DBD sangat penting dilakukan. Secara umum, diagnosis dini DBD dilakukan melalui pemeriksaan trombosit namun pemeriksaan ini tidak spesifik. Salah satu uji klinis lainnya yang dapat dilakukan untuk diagnosis dini DBD adalah deteksi limfosit plasma biru (LPB) melalui pencitraan sel darah. Oleh karena itu, pada studi ini diusulkan metode deteksi LBP secara otomatis pada citra mikroskopis darah. Data dikumpulkan dari pasien dengue dan subjek normal. Pada studi ini digunakan 20 gambar dataset yang terdiri dari 10 gambar terinfeksi dengue dan 10 gambar limfosit biasa sebagai kondisi normal. Ekstraksi ciri dilakukan dengan filter Gabor dan kemudian validasi dilakukan dengan K-Nearest Neigbor (K-NN) dan 5-fold cross validation. Dari pengujian yang dilakukan diperoleh akurasi deteksi tertinggi sebesar 90%, dimana dicapai menggunakan metode Cosine K-NN. Hasil studi ini diharapkan dapat digunakan dalam menunjang penegakan diagnosa penyakit dengue.

Kata kunci: demam berdarah dengue, deteksi, limfosit, K-NN

 

ABSTRACT

Dengue Hemorrhagic Fever (DHF) is a deadly disease caused by the dengue virus, so early diagnosis of DHF is very important. Commonly, early diagnosis of dengue fever is done through a platelet examination, but this examination is not specific. One of the other clinical tests that can be done for early diagnosis of DHF is detection of blue plasma lymphocytes (LBP) through blood cell imaging. Therefore, this study proposes an automatic LBP detection method on microscopic blood images. Data were collected from dengue patients and normal subjects. A total of 20 images were analyzed in this study consisting of 10 images infected with dengue and 10 images of normal lymphocytes as normal conditions. Feature extraction was carried out with the Gabor filter and then the validation was carried out with K-Nearest Neigbor (K-NN) and 5-fold cross validation. From the tests conducted, the highest detection accuracy is 90%, which is achieved using the Cosine K-NN method. The results of this study are expected to be used in supporting the diagnosis of dengue disease.

Keywords: Dengue hemorrhagic fever, detection, lymphocytes, K-NN


Keywords


demam berdarah dengue; deteksi; limfosit; K-NN.

References


Arruan, R. D., Rambert, G., & Manoppo, F. (2015). Limfosit Plasma Biru Dan Jumlah Leukosit Pada Pasien Anak Infeksi Virus Dengue Di Manado. Jurnal e-Biomedik, 3(1), 1–4. https://doi.org/10.35790/ebm.3.1.2015.7412

Aryu Candra. (2010). Demam Berdarah Dengue: Epidemiologi, Patogenesis dan Faktor Risiko Penularan. Aspirator, 2(2), 119–120.

Clarice, C. S. H., Abeysuriya, V., de Mel, S., Thilakawardana, B. U., de Mel, P., de Mel, C., Chandrasena, L., Seneviratne, S. L., Yip, C., & Yap, E. S. (2019). Atypical lymphocyte count correlates with the severity of dengue infection. PLoS ONE, 14(5), 1–11. https://doi.org/10.1371/journal.pone.0215061

Geler, Z., Kurbalija, V., Radovanović, M., & Ivanović, M. (2016). Comparison of different weighting schemes for the kNN classifier on time-series data. Knowledge and Information Systems, 48(2), 331–378. https://doi.org/10.1007/s10115-015-0881-0

Hasan S, Jamdar SF, Alalowi M, & Al Ageel Al Beaiji SM. (2016). Dengue virus: A global human threat: Review of literature. J. Int Soc Prevent Communit Dent., 6, 1–6.

Ibrahim, N., Bacheramsyah, T. F., Hidayat, B., & Darana, S. (2018). Pengklasifikasian Grade Telur Ayam Negeri menggunakan Klasifikasi K-Nearest Neighbor berbasis Android. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(2), 288. https://doi.org/10.26760/elkomika.v6i2.288

Indrawan, M. A., Muhyi, A., & Leatemia, L. D. (2018). Gambaran Hasil Pemeriksaan Serologis IgM dan IgG Dengue Pada Anak Penderita Demam Berdarah Dengue Berdasarkan Lama Hari Demam di RSUD Abdul Wahab Sjahranie Samarinda. Jurnal kedokteran Mulawarman, 5(2), 23–31.

Irianti, D. M., Reniarti, L., & MS, A. (2016). Hubungan Jumlah Limfosit Plasma Biru dengan Spektrum Klinis dan Perannya dalam Memprediksi Perubahan Spektrum Klinis Infeksi Dengue pada Anak. Sari Pediatri, 10(5), 325. https://doi.org/10.14238/sp10.5.2009.325-30

Johnson, J. M., & Yadav, A. (2018). Fault Detection and Classification Technique for HVDC Transmission Lines Using KNN. Dalam Information and Communication Technology for Sustainable Development (Nomor August, hlm. 245–253). https://doi.org/10.1007/978-981-10-3920-1_25

Kartika, J. I., & Santoso, E. (2017). Penentuan Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor dan Weighted Product (Studi Kasus: SMP Negeri 3 Mejayan). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1(5), 9.

Kemenkes RI. (2010). Demam Berdarah Dengue. Buletin Jendela Epidemiologi, 2, 48.

Khetarpal, N., & Khanna, I. (2016). Dengue Fever: Causes, Complications, and Vaccine Strategies. Journal of Immunology Research, 2016(3). https://doi.org/10.1155/2016/6803098

Krisandi, N., & Prihandono, B. (2013). ALGORITMA k-NEAREST NEIGHBOR DALAM KLASIFIKASI DATA HASIL PRODUKSI KELAPA SAWIT PADA PT. MINAMAS KECAMATAN PARINDU. Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 2(1), 6.

Kurane, I. (2007). Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comparative Immunology, Microbiology and Infectious Diseases, 30(5–6), 329–340. https://doi.org/10.1016/j.cimid.2007.05.010

Kusban, M. (2015). Verifikasi dan Identifikasi Telapak Tangan dengan Kernel Gabor. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 4(2). https://doi.org/10.22146/jnteti.v4i2.151

Metrikawati, S. F. (2014). Model Dan Simulasi Transmisi Virus Dengue Di Dalam Tubuh Manusia. Jurnal Konvergensi, 4(2), 115–127.

Mustakimah, S. (2012). GAMBARAN LIMFOSIT PLASMA BIRU (LPB) BERDASARKAN DERAJAT PENYAKIT PADA DENGUE HEMORRHAGIC FEVER ( DHF). Laporan Tugas Akhir. Universitas Muhamadiyah Semarang.

Naik, S., & Koley, E. (2019). Fault Detection and Classification scheme using KNN for AC/HVDC Transmission Lines. 2019 International Conference on Communication and Electronics Systems (ICCES), 1131–1135. https://doi.org/10.1109/ICCES45898.2019.9002230

Prabhavathi, Madhusudan, Suman, Govindaraj, & Puttaswamy. (2017). Study of clinical and laboratory predictive markers of dengue fever and severe dengue in children. J PediatrRes., 4(06), 397–404. https://doi.org/10.1037/0022-3514.51.6.1173

Raharjo, B., & Hadi, S. (2019). High Fluorescent Lymphocyte Count Examination in Dengue Hemorrhagic Patients With Sysmex Xn-1000 Hematology Analyzer. Indonesian Journal of Clinical Pathology and Medical Laboratory, 25(2), 207. https://doi.org/10.24293/ijcpml.v25i2.1443

Sooai, A. G., Rumaksari, Atyanta. N., Khamid, K., Fanani, N. Z., Sumpeno, S., & Purnomo, M. H. (2018). Deteksi Gestur Lengan Dinamis pada Lingkungan Virtual Tiga Dimensi Koleksi Warisan Budaya. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 7(4). https://doi.org/10.22146/jnteti.v7i4.457

Sooai, A. G., Yoshimoto, K., Takahashi, H., Sumpeno, S., & Purnomo, M. H. (2018). Dynamic Hand Gesture Recognition on 3D Virtual Cultural Heritage Ancient Collection Objects Using k-Nearest Neighbor. 8.

Sorisi, A. M. H. (2013). Transmisi Transovarial Virus Dengue Pada Nyamukaedes Spp. Jurnal Biomedik (Jbm), 5(1). https://doi.org/10.35790/jbm.5.1.2013.2042

Vitola, J., Pozo, F., Tibaduiza, D., & Anaya, M. (2017). A Sensor Data Fusion System Based on k-Nearest Neighbor Pattern Classification for Structural Health Monitoring Applications. Sensors, 17(2), 417. https://doi.org/10.3390/s17020417

Wang, Y., Song, Q., Zhang, H., Huang, X., & Zhou, Z. (2012). A new approach for landmine discrimination in SAR images. 2012 International Conference on Image Analysis and Signal Processing, 1–4. https://doi.org/10.1109/IASP.2012.6425019




DOI: https://doi.org/10.26760/elkomika.v9i1.150

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License