Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet
Abstract
ABSTRAK
Diabetic Retinopathy merupakan penyakit yang dapat mengakibatkan kebutaan mata yang disebabkan oleh adanya komplikasi penyakit diabetes melitus. Oleh karena itu mendeteksi secara dini sangat diperlukan untuk mencegah bertambah parahnya penyakit tersebut. Penelitian ini merancang sebuah sistem yang dapat mendeteksi Diabetic Retinopathy berbasis Deep Learning dengan menggunakan Convolutional Neural Network (CNN). EfficientNet model digunakan untuk melatih dataset yang telah di pre-prosesing sebelumnya. Hasil dari penelitian tersebut didapatkan akurasi sebesar 79.8% yang dapat mengklasifikasi 5 level penyakit Diabetic Retinopathy.
Kata kunci: Diabetic Retinopathy, Deep Learning, CNN, EfficientNet, Diabetic Classification
Â
ABSTRACT
Diabetic Retinopathy is a diseases which can cause blindness in the eyes because of the complications of diabetes mellitus. Therefore, an early detection for this diseases is very important to prevent the diseases become severe. This research builds the system which can detect the Diabetic Retinopathy based on Deep Learning by using Convolutional Neural Network (CNN). EfficientNet model is used to trained the dataset which have been pre-prossed. The result shows that the system can clasiffy the 5 level of Diabetic Retinopathy with accuracy 79.8%.Â
Keywords: Diabetic Retinopathy, Deep Learning, CNN, EfficientNet, Diabetic Classification
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ahmadi, M., Vakili, S., Langlois, J. M. P., & Gross, W. (2018). Power Reduction in CNN Pooling Layers with a Preliminary Partial Computation Strategy. 2018 16th IEEE International New Circuits and Systems Conference, NEWCAS 2018, (pp. 125–129).
Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2018). Understanding of a convolutional neural network. Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, (pp. 1–6).
Campos, G. F. C., Mastelini, S. M., Aguiar, G. J., Mantovani, R. G., Melo, L. F. de, & Barbon, S. (2019). Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization. Eurasip Journal on Image and Video Processing, 2019, (1), 1–18.
Duh, E. J., Sun, J. K., & Stitt, A. W. (2017). Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight, 2(14), 1–13.
Gonzalez, R. C. (2018). Deep Convolutional Neural Networks [Lecture Notes]. IEEE Signal Processing Magazine, 35(6), 79–87.
Nikhil, M. N., Angel, R. A. (2019). Diabetic Retinopathy Stage Classification using CNN. International Research Journal of Engineering and Technology , 6(5), 5969–5974.
Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, (pp. 200–205).
Qidong, L., Yingying, L., Zhilian, Q., Xiaowei, L., & Yun, X. (2020). Speech Recognition using EfficientNet. Proceedings of the 2020 5th International Conference on Multimedia Systems and Signal Processing, (pp. 64–68).
Qomariah, D. U. N., Tjandrasa, H., & Fatichah, C. (2019). Classification of diabetic retinopathy and normal retinal images using CNN and SVM. Proceedings of 2019 International Conference on Information and Communication Technology and Systems, ICTS 2019, (pp. 152–157).
Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., Khan, I. A., & Jadoon, W. (2019). A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection. IEEE Access, 7, 150530–150539.
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. 36th International Conference on Machine Learning, ICML 2019, 2019-June, (pp. 10691–10700).
Wang, X., Lu, Y., Wang, Y., & Chen, W. B. (2018). Diabetic retinopathy stage classification using convolutional neural networks. Proceedings - 2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science, IRI 2018, (pp. 465–471).
Wu, L. (2013). Classification of diabetic retinopathy and diabetic macular edema. World Journal of Diabetes, 4(6), 290–294.
Yadav, G., Maheshwari, S., & Agarwal, A. (2014). Contrast limited adaptive histogram equalization based enhancement for real time video system. Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2014, (pp. 2392–2397).
Zebin, T., Scully, P. J., Peek, N., Casson, A. J., & Ozanyan, K. B. (2019). Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition. IEEE Access, 7, 133509–133520.
DOI: https://doi.org/10.26760/elkomika.v8i3.693
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.