The Viability of Leap Motion Implementation in Controlling Drone using K-Nearest Neighbor Algorithm
Abstract
ABSTRAK
Pengendalian drone secara konvensional menggunakan joystik mengurangi fleksibilitas pergerakannya. Metoda pengendalian akan menjadi lebih bebas dan fleksibel dengan menggunakan pergerakan tangan. Metode pengendalian dengan pergerakan tangan ini menghasilkan data set dalam jumlah yang besar yang mengendalikan arah drone. Dengan alasan tersebut, Leap Motion Controller dibutuhkan untuk merekam dan mengenali contoh-contoh pose tangan dan mengekstrak data set. Metode pendekatan yang di lakukan adalah menggunakan algoritma K-Nearest Neighbor (KNN) untuk mengklasifikasikan nilai x, y, z, Pitch, Roll dan Yaw yang berdasarkan pergerakan pesawat konvensional. Riset ini fokus pada nilai akurasi dalam menerapkan peralatan Leap Motion dalam mengontrol arah drone dengan menggunakan algoritma KNN. Hasil eksperimen menunjukkan bahwa nilai k=3 menghasilkan tingkat akurasi sebesar 72.8%.
Kata kunci: Drone Controller, Hand Gesture, K-Nearest Neighbor Algorithm, Leap Motion, K-value
Â
ABSTRACT
Controlling a drone can be more entertaining and flexible by using a hand esture compare to the conventional mode by using a joystick. However, a drone controlling using the hand gestures produce a large number of data sets that drive the drone’s movements in particular. For this reason, a Leap Motion Controller is required to record and recognize the hand pose samples and extract the data sets. Our approach is to use the K-Nearest Neighbor (KNN) algorithm as our method in order to classify the x, y, z, Pitch, Roll and Yaw values which are based on the conventional aircraft motions. This research focuses on the accuracy value of implementing the Leap Motion device to control a drone with the KNN algorithm. The result shows that the k-values from 3 obtain 72.8% of accuracyÂ
Keywords: Drone Controller, Hand Gesture, K-Nearest Neighbor Algorithm, Leap Motion, K-value
Keywords
Full Text:
PDFReferences
Birdayansyah, R., Soedjarwanto, N., & Zebua, O. (2015). Pengendalian Kecepatan Motor DC Menggunakan Perintah Suara Berbasis Mikrokontroler Arduino. Electrician, 9(2), 97-108.
Croassacipto, M., Ichwan, M., & Utami, D. B. (2019). Klasifikasi Nada Sesuai Kodà ly Handsign Dengan Metode K-Nearest Neighbor Pada Leap Motion Controller. Indonesia Journalon Computing (Indo-JC), 4(1), 75-84.
Hadi, S. W., Setyawan, G. E. & Maulana, R., (2017). Sistem Kendali Terbang Ar.Drone Quadcopter Dengan Prinsip Natural User Interface Menggunakan Microsoft Kinect. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK), 380-386.
Hsiao, D. Y., Sun, M., Ballweber, C., Cooper, S., & Popović, Z. (2016, May). Proactive sensing for improving hand pose estimation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, (pp. 2348-2352).
Dzulkarnain, I., Sumpeno, S., & Christyowidiasmoro. (2016). Pengenalan Isyarat Tangan Menggunakan Leap Motion Controller untuk Pertunjukan Boneka Tangan Virtual. Jurnal Teknik ITS, 5(2).
Kim, J., Park, C., Ahn, J., Ko, Y., Park, J., & Gallagher, J. C. (2017, March). Real-time UAV sound detection and analysis system. In 2017 IEEE Sensors Applications Symposium (SAS), (pp. 1-5).
Python SDK Leap Motion Documentation, https://developer.leapmotion.com/documentation. Last visited : Oktober 2019.
Rechy-Ramirez, E. J., Marin-Hernandez, A., & Rios-Figueroa, H. V. (2018). Impact of commercial sensors in human computer interaction: a review. Journal of Ambient Intelligence and Humanized Computing, 9(5), 1479-1496.
Ren, Y., & Zhang, F. (2009). Hand gesture recognition based on MEB-SVM. In 2009 International Conference on Embedded Software and Systems, (pp. 344-349).
Sarkar, A., Patel, K. A., Ram, R. G., & Capoor, G. K. (2016, March). Gesture control of drone using a motion controller. In 2016 International Conference on Industrial Informatics and Computer Systems (CIICS) (pp. 1-5). IEEE.
Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. (2013). Analysis of the accuracy and robustness of the leap motion controller. Sensors, 13(5), 6380-6393.
DOI: https://doi.org/10.26760/elkomika.v8i3.683
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.