Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network

YULI SUN HARIYANI, SUGONDO HADIYOSO, THOMHERT SUPRAPTO SIADARI

Abstract


ABSTRAK

Penyakit Coronavirus-2019 atau Covid-19 telah menjadi pandemi global dan menjadi masalah utama yang harus segera dikendalikan. Salah satu cara yang dapat dilakukan adalah memutus rantai penyebaran virus tersebut dengan melakukan deteksi dan melalukan karantina. Pencitraan X-Ray dapat dijadikan alternatif dalam mempelajari Covid-19. X-Ray dianggap mampu menggambarkan kondisi paru-paru pada pasien Covid-19 dan dapat menjadi alat bantu diagnosa klinis. Pada penelitian ini, kami mengusulkan pendekatan deep learning berbasis residual deep network untuk deteksi Covid-19 melalui citra chest X-Ray. Evaluasi yang dilakukan untuk mengetahui performa metode yang diusulkan berupa precision, recall, F1, dan accuracy. Hasil eksperimen menunjukkan bahwa usulan metode ini memberikan precision, recall, F1 dan accuracy masing-masing 0,98, 0,95, 0,97 dan 99%. Pada masa mendatang, studi ini diharapkan dapat divalidasi dan kemudian digunakan untuk melengkapi diagnosa klinis oleh dokter.

Kata kunci: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network

 

ABSTRACT

Coronavirus-2019 or Covid-19 disease has become a global pandemic and is a major problem that must be stopped immediately. One of the ways that can be done to stop its spreading is to break the spreading chain of the virus by detecting and doing quarantine. X-Ray imaging can be used as an alternative in detecting Covid-19. X-Ray is considered able to describe the condition of the lungs for Covid-19 suspected patients and can be a supporting tool for clinical diagnosis. In this study, we propose a residual based deep learning approach for Covid-19 detection using chest X-Ray images. Evaluation is carried out to determine the performance of the proposed method in the form of precision, recall, F1 and accuracy. Experiments results show that our proposed method provides precision, recall, F1 and accuracy respectively 0.98, 0.95, 0.97 and 99%. In the future, this study is expected to be validated and then used to support clinical diagnoses by doctors.

Keywords: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network


Keywords


Coronavirus-2019; COVID-19; chest X-Ray; deep learning; residual network

References


Allaouzi, I., & Ahmed, M. B. (2019). A novel approach for multi-label chest X-Ray classification of common thorax diseases. IEEE Access, 7, 64279-64288. https://doi.org/10.1109/ACCESS.2019.2916849

Boldog, P., Tekeli, T., Vizi, Z., Dénes, A., Bartha, F. A., & Röst, G. (2020). Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China. Journal of Clinical Medicine, 9(2). https://doi.org/10.3390/jcm9020571

Chollet, F. (2015). Keras. https://keras.io.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition (pp. 248-255). https://doi.org/10.1109/CVPR.2009.5206848

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). https://doi.org/10.1109/CVPR.2016.90

Hosseiny, M., Kooraki, S., Gholamrezanezhad, A., Reddy, S., & Myers, L. (2020). Radiology Perspective of Coronavirus Disease 2019 (COVID-19): Lessons From Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Cardiopulmonary Imaging • Review, (May), 1–5.

Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... & Le, Q. V. (2019). Searching for mobilenetv3. Proceedings of the IEEE International Conference on Computer Vision (pp. 1314-1324). https://doi.org/10.1109/ICCV.2019.00140

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). https://doi.org/10.1109/CVPR.2017.243

Liu, K.-C., Xu, P., Lv, W.-F., Qiu, X.-H., Yao, J.-L., Jin-Feng, G., & Wei-Wei. (2020). CT manifestations of coronavirus disease-2019: a retrospective analysis of 73 cases by disease severity. European Journal of Radiology, (February), 108941. https://doi.org/https://doi.org/10.1016/j.ejrad.2020.108941

Mckeever, Amy. (nationalgeographic). (2020). Coronavirus is officially a pandemic. Here’s why that matters.

Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks. arXiv preprint arXiv:2003.10849.

Singh, S., & Krishnan, S. (2019). Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks. arXiv preprint arXiv:1911.09737.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., … Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama, 3–4. https://doi.org/10.1001/jama.2020.3786

Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., … Wu, W. (2020). Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. Medical Physics, 1–29. Retrieved from http://arxiv.org/abs/2002.09334

Yoon, S. H., Lee, K. H., Kim, J. Y., Lee, Y. K., Ko, H., Kim, K. H., … Kim, Y.-H. (2020). Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea. Korean Journal of Radiology, 21(4), 494–500. https://doi.org/10.3348/kjr.2020.0132

Zhu, Y., Liu, Y.-L., Li, Z.-P., Kuang, J.-Y., Li, X.-M., Yang, Y.-Y., & Feng, S.-T. (2020). Clinical and CT imaging features of 2019 novel coronavirus disease (COVID-19). The Journal of Infection, S0163-4453(20)30104-3. https://doi.org/10.1016/j.jinf.2020.02.022




DOI: https://doi.org/10.26760/elkomika.v8i2.443

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License