Perbaikan MPPT Incremental Conductance menggunakan ANN pada Berbayang Sebagian dengan Hubungan Paralel
Abstract
ABSTRAK
Algoritma IncrementaL Conductance (IC) adalah algoritma yang bisa diimplementasikan pada sistem Maximum Power Point Tracking (MPPT) untuk mendapatkan daya maksimum dari panel surya. Akan tetapi algoritma MPPT IC tidak bisa bekerja dikondisi berbayang sebagian, karena menimbulkan daya maksimum lebih dari satu. Artificial Neural Network (ANN) bisa mengidentifikasi kurva karakteristik pada kondisi berbayang sebagian dan dapat mengetahui posisi daya maksimum yang sebenarnya. Masukan dari ANN merupakan nilai arus hubung singkat serta tegangan buka dari panel surya, dan keluaran dari ANN adalah nilai duty cycle yang digunakan sebagai posisi awal tracking dari MPPT IC. Data learning didapatkan dari perubahan nilai duty cycle secara manual pada sistem MPPT di berbagai kondisi radiasi. Hasil pengujian menunjukkan algoritma yang diajukan dapat menaikkan energi 5.79% - 13.32% dibandingkan dengan ANN-Perturb and Observe dan ANN-Incremental Resistance dengan durasi 0.6 detik.
Kata kunci: MPPT, Incremental Conductance, Artficial Neural Network, Berbayang Sebagian, Hubungan Paralel
Â
ABSTRACT
The Incremental Conductance (IC) algorithm is an algorithm that can be implemented on Maximum Power Point Tracking (MPPT) systems to get maximum power from solar panels. However, the MPPT IC algorithm cannot work in partial shading conditions because it causes more than one maximum power. Artificial Neural Network (ANN) can identify characteristic curves under partial shading conditions and can know the actual maximum power position. The input from ANN is the short circuit current and the open voltage of the solar panel. The output of ANN is the duty cycle value that is used as the initial tracking position of the MPPT IC. Learning data is obtained from manually changing the duty cycle value in the MPPT system in various radiation conditions. The test results show the proposed algorithm can increase energy 5.79% - 13.32% when compared with ANN-Perturb and Observe and ANN-Incremental Resistance with a duration of 0.6 seconds.
Keywords: Maximum Power Point Tracking, Incremental Conductance, Artficial Neural Network, Partial Shading, Parallel Connection
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Allataifeh, A. A., Bataineh, K., & Al-Khedher, M. (2015). Maximum Power Point Tracking Using Fuzzy Logic Controller under Partial Conditions. Smart Grid and Renewable Energy, 06(01), 1–13.
Bouselham, L., Hajji, M., Hajji, B., & Bouali, H. (2017). A New MPPT-based ANN for Photovoltaic System under Partial Shading Conditions. Energy Procedia, 111(September 2016), 924–933.
BP Energy Outlook (2019). Edition The Energy Outlook explores the forces shaping the global energy transition out to 2040 and the key uncertainties surrounding that. BP Energy Outlook 2019.
Elobaid, L. M., Abdelsalam, A. K., & Zakzouk, E. E. (2015). Artificial neural network-based photovoltaic maximum power point tracking techniques: A survey. IET Renewable Power Generation.
Habibi, M. N., Ayub Windarko, N., & Tjahjono, A. (2019). Hybrid Maximum Power Point Tracking Using Artificial Neural Network-Incremental Conduction with Short Circuit Current of Solar Panel. IES 2019 - International Electronics Symposium (IES): The Role of Techno-Intelligence in Creating an Open Energy System Towards Energy Democracy, Proceedings, 63–69.
Isaloo, B. A., & Amiri, P. (2016). Improved variable step size incremental conductance MPPT method with high convergence speed for PV systems. Journal of Engineering Science and Technology, 11(4), 516–528.
Kamran, M., Mudassar, M., Fazal, M. R., Asghar, M. U., Bilal, M., & Asghar, R. (2018). Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system. Journal of King Saud University - Engineering Sciences.
Khadidja, S., Mountassar, M., & M’Hamed, B. (2017). Comparative study of incremental conductance and perturb & observe MPPT methods for photovoltaic system. International Conference on Green Energy and Conversion Systems, GECS .
Kurnia M, P., Ali, M., & Katherin, I. (2013). Penelusuran Daya Maksimum Pada Panel Photovoltaic Menggunakan Kontrol Logika Fuzzy Di Kota Surabaya. Jurnal Teknik POMITS, 2(1), 135–140.
Mahmoud, Y. A., Xiao, W., & Zeineldin, H. H. (2013). A parameterization approach for enhancing PV model accuracy. IEEE Transactions on Industrial Electronics, 60(12), 5708–5716.
Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867.
Necaibia, S., Kelaiaia, M. S., Labar, H., Necaibia, A., & Castronuovo, E. D. (2019). Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter. Solar Energy, 180, 152–168.
Olalla, C., Clement, D., Rodriguez, M., & Maksimovic, D. (2013). Architectures and control of submodule integrated dc-dc converters for photovoltaic applications. IEEE Transactions on Power Electronics, 28(6), 2980–2997.
Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the perturb-and-observe and incremental conductance mppt methods for PV systems. IEEE Journal of Photovoltaics, 3(3), 1070–1078.
Tamrakar, V., Gupta, S. C., & Sawle, Y. (2016). Study of characteristics of single and double diode electrical equivalent circuit models of solar PV module. International Conference on Energy Systems and Applications, ICESA, 312–317.
Windarko, N. A., Habibi, M. N., Ari, M., Nugroho, B., & Prasetyono, E. (2020). Simulator Panel Surya Ekonomis untuk Pengujian MPPT pada Kondisi Berbayang Sebagian ( Low Cost PV Photovoltaic Simulator for MPPT Testing under Partial Shading ). 9(1), 110–115.
DOI: https://doi.org/10.26760/elkomika.v8i3.546
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.