Pengenalan Pola Sinyal Electromyography (EMG) pada Gerakan Jari Tangan Kanan

WAHYU MULDAYANI, ARIZAL MUJIBTAMALA NANDA IMRON, KHAIRUL ANAM, SUMARDI SUMARDI, WIDJONARKO WIDJONARKO, ZILVANHISNA EMKA FITRI

Sari


ABSTRAK

Sinyal EMG merupakan salah satu sinyal yang dapat digunakan untuk memberikan perintah pada kursi roda listrik. Sinyal EMG yang digunakan diambil dari sinyal otot fleksor dan ekstensor yang berada di tangan kanan. Sinyal tersebut diambil menggunakan sensor Myo Armband. Klasifikasi sinyal EMG diambil dari pergerakan jari yang mewakili perintah gerak yaitu jari kelingking untuk bergerak maju, jari manis untuk berhenti, jari tengah untuk belok kanan dan jari telunjuk untuk belok kiri. Setiap sinyal EMG diekstraksi fitur untuk menentukan karakteristik sinyal sehingga fitur yang diperoleh adalah Average Absolute Value, Root Mean Square, Simple Integral Square, EMG Simple Variant and Integrated EMG. Kemudian fitur tersebut digunakan sebagai input dari metode klasifikasi Artificial Neural Network Backpropagation. Jumlah data latih yang digunakan adalah 800 data sedangkan data uji yang digunakan adalah 200 data. Tingkat keberhasilan proses klasifikasi ini sebesar 93%.

Kata kunci: electromyogram, artificial neural network, klasifikasi sinyal, tangan kanan, Myo Armband.

 

ABSTRACT

EMG signal is one of the signals that can be used to give orders to electric wheelchairs. The EMG signal used is taken from the flexor and extensor muscle signals in the right hand. The signal is taken using the Myo Armband sensor. The EMG signal classification is taken from the movement of the finger which represents the command of motion ie the little finger to move forward, ring finger to stop, middle finger to turn right and index finger to turn left. Each EMG signal is extracted features to determine the signal characteristics so that the features obtained are Average Absolute Value, Root Mean Square, Simple Integral Square, EMG Simple Variant and Integrated EMG. Then the feature is used as input from the Backpropagation classification method. The amount of training data used is 800 data while the test data used is 200 data. The success rate of this classification process is 93%.

Keywords: electromyogram, artificial neural network, signal classification, right hand, Myo Armband.


Kata Kunci


Sinyal EMG; Myo Armband; Neural Network Backpropagation; Kursi Roda Elektrik

Teks Lengkap:

PDF

Referensi


AlKhazzar, A. M., & Nama Raheema, M. (2018). EMG Signal Classification Using Radial Basis Function Neural Network. 2018 Third Scientific Conference of Electrical Engineering (SCEE), 180–185.

Arief, Z., Sulistijono, I. A., & Ardiansyah, R. A. (2015). Comparison of five time series EMG features extractions using Myo Armband. 2015 International Electronics Symposium (IES), 11–14.

Artemiadis, P. K., and Kyriakopoulos, K. J. (2010). An EMG-Based Robot Control Scheme Robust to Time-Varying EMG Signal Features. IEEE Transactions on Information Technology in Biomedicine, 14(3), 582-588.

Falih, A. D. I., Dharma, W. A., & Sumpeno, S. (2017). Classification of EMG signals from forearm muscles as automatic control using Naive Bayes. 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), 346–351.

He, S., Yang, C., Wang, M., Cheng, L., & Hu, Z. (2017). Hand gesture recognition using MYO armband. 2017 Chinese Automation Congress (CAC), 4850–4855.

Imron, A. M. N., Arifin, A., & Purwanto, D. (2016). Realisasi Kontrol Hirarki Untuk Pengaturan Kecepatan Kursi Roda Elektrik Berdasarkan Subject Intension Menggunakan Bioelectrical Impedance. Seminar Nasional Inovasi dan Aplikasi Teknologi Di Industri (SENIATI), (pp. 6).

Imron, A. M. N., Muldayani, W., & Sumardi, S. (2019). Perintah Kontrol Gerak Kursi Roda Elektrik Menggunakan Sensor Elektromiograf. Jurnal Rekayasa Elektrika, 15(1).

Khamid, Wibawa, A. D., & Sumpeno, S. (2017). Gesture Recognition for Indonesian Sign Language Systems (ISLS) Using Multimodal Sensor Leap Motion and Myo Armband Controllers Based-on Naïve Bayes Classifier. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), 1–6.

Kurniawan, S. R., & Pamungkas, D. (2018). MYO Armband sensors and Neural Network Algorithm for Controlling Hand Robot. 2018 International Conference on Applied Engineering (ICAE), 1–6.

Oonishi, Y., Oh, S., and Hori, Y. (2010). A New Control Method for Power-Assisted Wheelchair Based on the Surface Myoelectric Signal. IEEE Transactions on Industrial Electronics, 57(9), 3191-3196.

Pour, M. K. (2018). Encyclopedia of Information Science and Technology (Fourth). United States of America: IGI Global.

Rahayuningsih, I., Wibawa, A. D., & Pramunanto, E. (2018). Klasifikasi Bahasa Isyarat Indonesia Berbasis Sinyal EMG Menggunakan Fitur Time Domain (MAV, RMS, VAR, SSI). Jurnal Teknik ITS, 7(1), 175–180.




DOI: https://doi.org/10.26760/elkomika.v8i3.591

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (cetak) : 2338-8323   |  ISSN (elektronik) : 2459-9638    

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206)  Fax. 7202892

Surat Elektronik jte.itenas@itenas.ac.id

____________________________________________________________

Terindeks 

index copernicus____________________________________________________________

Statistik Pengunjung 

Free counters!

 Web
Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License