Iluminasi Panel Surya pada Satelit Orbit Rendah Ekuatorial

DESTI IKA SURYANTI, SRI RAMAYANTI, MOHAMMAD MUKHAYADI

Abstract


ABSTRAK

Desain satelit telah berkembang ke arah miniaturisasi untuk mengurangi biaya peluncuran. Satelit kecil menyediakan platform berbiaya rendah untuk misi luar angkasa. Salah satu permasalahan utama satelit kecil adalah terbatasnya ketersediaan daya. Karena ketersediaan daya diperlukan agar subsistem satelit dapat bekerja, maka pada proses desain satelit perlu dilakukan analisis dan estimasi ketersediaan daya selama satelit mengorbit dengan tetap mempertahankan kekompakan dan volume yang diberlakukan oleh standar. Penelitian ini bertujuan untuk mengetahui kondisi iluminasi matahari pada panel surya dari berbagai alternatif desain penempatan sehingga diperoleh sebuah desain yang efisien. Iluminasi maksimum sebuah panel surya triple junction yang terpasang secara body mounted pada satelit kurang lebih sebesar 60%. Berdasarkan hasil penelitian ini, kombinasi pemasangan 3 body mounted panel surya dan 2 simple deploy panel surya menghasilkan persentase iluminasi dua kali lipat dibandingkan 5 body mounted panel surya.

Kata kunci: panel surya triple junction, iluminasi, body mounted, simple deploy, daya

 

ABSTRACT

Satellite design has envolved towards miniaturization to reduce launch costs. Small satellites provide a low-cost platform for space missions. One of the main problems with small satellites is the limited availability of power. Because the availability of power is needed so that the satellite subsystem can work, the satellite design process needs to analyze and estimated power availability as long as the satellite orbits while maintaining the compactness and volume imposed by the standard. This study aims to determine the conditions of solar illumination on solar panels from various alternative design placements in order to obtain an efficient design. Maximum illumination of triple junction solar panel mounted on a small satellite is approximately 60%. Based on the results of this study, the combination of installing 3 body mounted solar panels and 2 simple deploy solar panels produced twice the illumination percentage compared to 5 body mounted solar panels.

Keywords: solar panel triple junction, illumination, body mounted, simple deploy, power


Keywords


satelit; panel surya; body mounted; deploy

References


AL-Rousan, N., Isa, N. A. M., & Desa, M. K. M. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews, 82 (3), 2548–2569.

Anigstein, P. A., & Sánchez Peña, R. S. (1998). Analysis of solar panel orientation in low altitude satellites. IEEE Transactions on Aerospace and Electronic Systems, 34 (2), 569–578.

Anspaugh, B. E. (1996). GaAs Solar Cell Radiation Handbook. National Aeronautics and. Space Administration JPL.

Encyclopaedia Britannica . (2012). Retrieved from https://www.britannica.com/science/autumnal- equinox/media/1/45236/112844.

Ippolito, L. (1986). Communications Atmospheric Effects, Satellite Link Design.

James, J. J., Wertz, R. R., & Larson, W. J. (1999). Wertz Mission Geometry; Orbit and Constellation Design and Management, James R. Wertz Influence of Psychological Factors on Product Development . Retrieved from https://theeye. eu/public/WorldTracker.org/Space/SpaceEngineering/Space_Mission_Analysis_and_Design.pdf

Karim, A., & Hasbi, W. (2013). Analisis Dan Pengujian Sistem Baterai Satelit LAPAN-A2/ORARI. Jurnal Teknologi Dirgantara, 11 (2), 159–165.

Kim, E. J., Sim, E. S., & Kim, H. D. (2017). Development of the power simulation tool for energy balance analysis of nanosatellites. Journal of Astronomy and Space Science, 34 (3), 225–235.

Loh, K. (1991). Solar Cells for Space Applications. 235, 63–67.

Luceño-Sánchez, J. A., Díez-Pascual, A. M., & Capilla, R. P. (2019). Materials for photovoltaics: State of art and recent developments. International Journal of Molecular Sciences, 20 (4). 976.

Mungiguerra, S., Zuppardi, G., Spanò Cuomo, L., & Savino, R. (2018). Effects of solar panels on Aerodynamics of a small satellite with deployable aero-brake. Acta Astronautica, 151, 456–466.

NREL. (2019). Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. National Renewable Energy Laboratory. Retrieved from https://www.nrel.gov/pv/cellefficiency.html

Park, H., & Cha, H. (2016). Electrical design of a solar array for LEO satellites. International Journal of Aeronautical and Space Sciences, 17 (3), 401–408.

Ramos-hernanz, J., Lopez-guede, J. M., & Zulueta, E. (2017). Reverse Saturation Current Analysis in Photovoltaic Cell Models. WSEAS Transactions on Power Systems, 12, 231–237.

Ray, S. N. (1963). The physics of space research. In British Journal of Applied Physics, 14 (2). 77-78.

Rodiek, J. A., & Brandhorst, H. W. (2008). Solar array reliability in satellite operations. 2008 33rd IEEE Photovoltaic Specialists Conference, (pp. 1-4).

Saifudin, M. A., Karim, A., & Mujtahid. (2018). LAPAN-A4 Concept and Design for Earth Observation and Maritime Monitoring Missions. ICARES 2018 - Proceedings of the 2018 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, (pp. 44–48).

Santoni, F., Piergentili, F., Donati, S., Perelli, M., Negri, A., & Marino, M. (2014). An innovative deployable solar panel system for Cubesats. Acta Astronautica, 95 (1), 210–217.

Shekoofa, O. (2011). Solar arrays testing for space applications. RAST 2011 - Proceedings of 5th International Conference on Recent Advances in Space Technologies, (pp. 560–565).

Zapata, E., & Mccleskey, C. (2019). An Analysis and Review of Measures and Relationships in Space Transportation Affordability. AIAA Joint Propulsion Conference. Retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140011200.pdf.




DOI: https://doi.org/10.26760/elkomika.v7i3.480

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License