Smoke and Fire Detection Base on Convolutional Neural Network
Abstract
ABSTRAK
Deteksi api dan asap adalah langkah pertama sebagai deteksi dini kebakaran. Deteksi dini kebakaran berdasarkan pemrosesan gambar dianggap mampu memberikan hasil yang efektif. Pilihan metode deteksi adalah kunci penting. Metode ekstraksi fitur berdasarkan analisis statistik dan analisis dinamis kadang-kadang memberikan akurasi kurang akurat dalam mendeteksi asap dan api, terutama pada deteksi asap, hal ini disebabkan oleh karakteristik objek asap yang transparan dan bergerak. Dalam penelitian ini, metode Convolutional Neural Network (CNN) diterapkan untuk deteksi asap dan api. Dari penelitian ini, diketahui bahwa CNN memberikan kinerja yang baik dalam deteksi kebakaran dan asap. Akurasi deteksi tertinggi diperoleh dengan menggunakan 144 data pelatihan, 20.000 iterasi dengan dropout.
Kata kunci: Deteksi asap, deteksi kebakaran, Jaringan Syaraf Konvolusional
Â
ABSTRACT
Fire and smoke detection is the first step as early detection of fires. Early detection of fire based on image processing is considered capable of providing effective results. The choice of detection method is an important key. Feature extraction methods based on statistical analysis and dynamic analysis sometimes provide less accurate accuracy in detecting smoke and fire, especially on smoke detection, this is due to the characteristics of transparent and moving smoke objects. In this study, the Convolutional Neural Network (CNN) method was applied for smoke and fire detection. From this study, it is known that CNN provides good performance in fire and smoke detection. The highest detection accuracy is obtained by using 144Â training data, 20,000 iterations and dropout is true.
Keywords: Smoke detection, Fire detection, Convolutional Neural Network
Keywords
Full Text:
PDFReferences
Dileep, K. A., Rashedul I., Sheraz, A. K., & Jong, M. K. (2017). A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems. Inf. Sci. (Ny). , 418–419 (32), 91–101.
Jasmin, Ć., Miroslav, B., & Domagoj, K. (2016). Computer Vision Application for Early Stage Smoke Detection on Ships. Maritime & Transportation Science, 52 (1), 63–80.
Jiuxiang, G., et al. (2018). Recent advances in convolutional neural networks. Pattern Recognit. , 77 (5), 354–377.
Luyang, J., Ming, Z., Pin L., & Xiaoqiang, X. (2017). A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Meas. J. Int. Meas. Confed. , 111 (18), 1–10.
Neha, S., Vibhor, J., & Anju, M. (2018). An Analysis of Convolutional Neural Networks for Image Classification. Procedia Comput. Sci. , 132 (38), 377–384.
Sipongi. (2018). Data Matrik Titik Panas TERRA/AQUA (LAPAN) ≥ 80%. Retrieved from sipongi.menlhk.go.id.
Sheng, L., Changwei, Y., Kelu, W., & Jiangyu, Z. (2015). Smoke detection based on condensed image. Fire Saf. J., 75 (5), 23–35.
Turgay, Ç., Huseyin, Ö., & Hasan, D. (2007). Fire and smoke detection without sensors. 15th European Signal Processing Conference, (pp. 1794–1798).
DOI: https://doi.org/10.26760/elkomika.v7i3.455
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.